• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Ya-jun, ZOU Chuan-shan, WANG Ruo-xi, LIN Lian-nan, ZHANG Guo-cai. Insecticidal activity analysis of three plant secondary metabolites on Lymantria dispar[J]. Journal of Beijing Forestry University, 2017, 39(11): 75-81. DOI: 10.13332/j.1000-1522.20170214
Citation: WANG Ya-jun, ZOU Chuan-shan, WANG Ruo-xi, LIN Lian-nan, ZHANG Guo-cai. Insecticidal activity analysis of three plant secondary metabolites on Lymantria dispar[J]. Journal of Beijing Forestry University, 2017, 39(11): 75-81. DOI: 10.13332/j.1000-1522.20170214

Insecticidal activity analysis of three plant secondary metabolites on Lymantria dispar

More Information
  • Received Date: June 15, 2017
  • Revised Date: July 13, 2017
  • Published Date: October 31, 2017
  • In order to investigate the insecticidal activity and mechanism of matrine, oxymatrine and kaempferol on 3rd instar larvae of Lymantria dispar, the effects of three plant secondary metabolites on the survival and three enzymes (GST, AChE and CarE) of L. dispar were analyzed by bioassay, in vitro and in vivo enzyme activity assay. The results indicated that matrine, oxymatrine and kaempferol all possessed a highly insecticidal activity on 3rd instar larvae of L. dispar, and matrine showed the highest insecticidal activity among three plant secondary metabolites with a LC50 value of 0.420 mg/mL. In vitro enzyme activity assays showed that the activities of GST, AChE and CarE could be inhibited by three plant secondary metabolites. The IC50 values of oxymatrine against GST and AChE were 0.928 and 0.717 mg/mL, respectively, while the IC50 value of matrine against CarE was 0.436 mg/mL, which was the highest inhibition. Furthermore, the results of in vivo enzyme activity assay indicated that matrine had the highest inhibition on GST, which showed the lowest activity at 48 hours after treatment and was 39% of the control at the same stage. Moreover, oxymatrine had the highest inhibition on AChE and CarE, and their activities were 44% and 40% of the control at 72 hours after treatment, respectively.The above results indicate that the inhibition of matrine, oxymatrine and kaempferol on three enzymes (GST, AChE and CarE) of L. dispar is one of the reasons for their insecticidal activity.
  • [1]
    陈澄宇, 康志娇, 史雪岩, 等.昆虫对植物次生物质的代谢适应机制及其对昆虫抗药性的意义[J].昆虫学报, 2015, 58(10):1126-1139. http://d.old.wanfangdata.com.cn/Periodical/kcxb201510011

    CHEN C Y, KANG Z J, SHI X Y, et al. Metabolic adaptation mechanisms of insects to plant secondary metabolites and their implications for insecticide resistance of insects[J]. Acta Entomologica Sinica, 2015, 58(10):1126-1139. http://d.old.wanfangdata.com.cn/Periodical/kcxb201510011
    [2]
    李明, 曾任森, 骆世明.次生代谢产物在植物抵抗病虫为害中的作用[J].中国生物防治, 2007, 23(3):269-273. http://d.old.wanfangdata.com.cn/Periodical/zgswfz200703015

    LI M, ZENG R S, LUO S M. Secondary metabolites related with plant resistance against pathogenic microorganisms and insect pests[J]. Chinese Journal of Biological Control, 2007, 23(3):269-273. http://d.old.wanfangdata.com.cn/Periodical/zgswfz200703015
    [3]
    孔垂华.21世纪植物化学生态学前沿领域[J].应用生态学报, 2002, 13(3):349-353. doi: 10.3321/j.issn:1001-9332.2002.03.023

    KONG C H. Frontier fields of plant chemical ecology in the 21st century[J]. The Journal of Applied Ecology, 2002, 13(3):349-353. doi: 10.3321/j.issn:1001-9332.2002.03.023
    [4]
    陈晓亚, 刘培.植物次生代谢物的分子生物学及基因工程[J].生命科学, 1996, 8(2):8-11. http://www.cnki.com.cn/Article/CJFDTotal-SMKX602.003.htm

    CHEN X Y, LIU P. Molecular biology and genetic engineering of plant secondary metabolites[J]. Chinese Bulletin of Life Sciences, 1996, 8(2):8-11. http://www.cnki.com.cn/Article/CJFDTotal-SMKX602.003.htm
    [5]
    杜近义, 胡国赋, 秦际威.植物次生代谢产物的生态学意义[J].生物学杂志, 1999, 16(5):9-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900621496

    DU J Y, HU G F, QIN J W. The ecological significance of plant secondary metabolites[J]. Journal of Biology, 1999, 16(5):9-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900621496
    [6]
    高微微, 伶建明, 郭顺星.植物次生代谢产物的生态学功能研究进展[J].中国药学杂志, 2006, 41(13): 961-964. doi: 10.3321/j.issn:1001-2494.2006.13.001

    GAO W W, LING J M, GUO S X.Advances in ecological functions of plant secondary metabolites[J]. Chinese Pharmaceutical Journal, 2006, 41(13): 961-964. doi: 10.3321/j.issn:1001-2494.2006.13.001
    [7]
    胡会平, 刘建慧, 孙鑫, 等.苦参碱及衍生物的生物活性和合成研究进展[J].鲁东大学学报(自然科学版), 2015, 31(4):339-345. doi: 10.3969/j.issn.1673-8020.2015.04.010

    HU H P, LIU J H, SUN X, et al. Research progress in biological activity and synthesis on matrine and its derivatives[J]. Journal of Ludong University (Natural Science Edition), 2015, 31(4):339-345. doi: 10.3969/j.issn.1673-8020.2015.04.010
    [8]
    杨雪云, 赵博光, 巨云为.苦参碱和氧化苦参碱的抑菌活性及增效作用[J].南京林业大学学报(自然科学版), 2008, 32(2):79-82. doi: 10.3969/j.issn.1000-2006.2008.02.018

    YANG X Y, ZHAO B G, JU Y W. Antifungal activities and synergetic tests of matrine and oxymatrine to some tree pathogens[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(2):79-82. doi: 10.3969/j.issn.1000-2006.2008.02.018
    [9]
    赵妍.山奈酚对脂多糖诱导小鼠急性肺损伤的保护作用[D].哈尔滨: 东北农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10224-1013207331.htm

    ZHAO Y.Protective effect of kaempferol on acute lung injury induced by lipopolysaccharide in mice[D]. Harbin: Northeast Agricultural University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10224-1013207331.htm
    [10]
    ZHANG J F, SUN J Z, WU Z B, et al. Identification of cotton varieties resistant to cannme spider mite and exploration of resistance mechanism[J]. Acta Phytophylacica Sinica, 1993, 20(2):155-161. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZWBF199302012.htm
    [11]
    彭露, 严盈, 刘万学, 等.植食性昆虫对植物的反防御机制[J].昆虫学报, 2010, 53(5):572-580. http://d.old.wanfangdata.com.cn/Periodical/kcxb201005012

    PENG L, YAN Y, LIU W X, et al. Counter-defense mechanisms of phytophagous insects towards plant defense[J]. Acta Entomologica Sinica, 2010, 53(5):572-580. http://d.old.wanfangdata.com.cn/Periodical/kcxb201005012
    [12]
    姜礅, 孟昭军, 严善春.用茉莉酸甲酯局部喷施长白落叶松苗对落叶松毛虫体内防御酶的影响[J].北京林业大学学报, 2017, 39(2):58-63. doi: 10.13332/j.1000-1522.20160291

    JIANG D, MENG Z J, YAN S C.Effects of partially spraying Larix olgensis seedlings with exogenous methyl jasmonate on the defensive enzyme activities of Dendrolimus superans larvae[J]. Journal of Beijing Forestry University, 2017, 39(2):58-63. doi: 10.13332/j.1000-1522.20160291
    [13]
    FELTON G W, TUMLINSON J H. Plant-insect dialogs: complex interactions at the plant-insect interface[J]. Current Opinion in Plant Biology, 2008, 11(4):457-463. doi: 10.1016/j.pbi.2008.07.001
    [14]
    YANG S, WU H, XIE J, et al. Depressed performance and detoxification enzyme activities of Helicoverpa armigera fed with conventional cotton foliage subjected to methyl jasmonate exposure[J]. Entomologia Experimentalis et Applicata, 2013, 147(2):186-195. doi: 10.1111/eea.12060
    [15]
    张鑫乾, 严俊鑫, 杨杰莹, 等.重瓣玫瑰诱导抗性对双斑萤叶甲成虫解毒酶的影响[J].东北林业大学学报, 2014, 42(5):125-128. doi: 10.3969/j.issn.1000-5382.2014.05.030

    ZHANG X Q, YAN J X, YANG J Y, et al. Effect of induced resistance of Rosa rugosa 'plena' on the activities of detoxifying enzymes in Monolepta hieroglyhica (Mostschulsky)[J]. Journal of Northeast Forestry University, 2014, 42(5):125-128. doi: 10.3969/j.issn.1000-5382.2014.05.030
    [16]
    李菁, 骆有庆, 石娟.利用植物源引诱剂监测与控制舞毒蛾[J].北京林业大学学报, 2011, 33(4):85-90. http://j.bjfu.edu.cn/article/id/9620

    LI J, LUO Y Q, SHI J.Use of phyto-attractant in monitoring and controlling gypsy moth[J]. Journal of Beijing Forestry University, 2011, 33(4):85-90. http://j.bjfu.edu.cn/article/id/9620
    [17]
    胡春祥.舞毒蛾生物防治研究进展[J].东北林业大学学报, 2002, 30(4):40-43. doi: 10.3969/j.issn.1000-5382.2002.04.011

    HU C X. Research progress of the biological control for Lymantria dispar L.[J]. Journal of Northeast Forestry University, 2002, 30(4):40-43. doi: 10.3969/j.issn.1000-5382.2002.04.011
    [18]
    LAZAREVIC J, PERIC-MATARUGA V, IVANOVIC J, et al. Host plant effects on the genetic variation and correlations in the individual performance of the gypsy moth[J]. Functional Ecology, 1998, 12(1):141-148. doi: 10.1046/j.1365-2435.1998.00166.x
    [19]
    丁吉同, 唐桦, 阿地力·沙塔尔, 等.4种植物源杀虫剂对亚洲型舞毒蛾幼虫的毒性与拒食作用[J].南京林业大学学报(自然科学版), 2013, 37(4):80-84. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201304015

    DING J T, TANG H, ADILI·SHATAER, et al. Comparison of the toxicities and antifeedant effects of four botanical insecticides against the larvae of Lymantria dispar asiatica Vnukovskij[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(4):80-84. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201304015
    [20]
    张凯, 周艳涛, 王皙玮, 等.铜、镉胁迫对舞毒蛾排毒代谢酶的影响[J].北京林业大学学报, 2016, 38(2):61-67. doi: 10.13332/j.1000-1522.20150293

    ZHANG K, ZHOU Y T, WANG X W, et al. Effects of copper and cadmium stress on the activities of detoxifying metabolic enzymes in Lymantria dispar[J]. Journal of Beijing Forestry University, 2016, 38(2):61-67. doi: 10.13332/j.1000-1522.20150293
    [21]
    邹传山, 曹传旺, 王志英.落叶松毛虫AChE最佳反应体系建立及其对3种杀虫剂敏感性比较[J].北京林业大学学报, 2013, 35(3):102-107. http://j.bjfu.edu.cn/article/id/9928

    ZOU C S, CAO C W, WANG Z Y. Determination of optimized reaction system for AChE in Dendrolimus superans and comparison of its sensitivity to three pesticides[J]. Journal of Beijing Forestry University, 2013, 35(3):102-107. http://j.bjfu.edu.cn/article/id/9928
    [22]
    VAN ASPEREN K. A study of housefly esterases by means of a sensitive colorimetric method[J]. Journal of Insect Physiology, 1962, 8(4):401-416. doi: 10.1016/0022-1910(62)90074-4
    [23]
    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254. doi: 10.1016/0003-2697(76)90527-3
    [24]
    贾明慧, 张辉, 张爱华, 等.植物次生代谢产物在国内农药开发方面的研究进展[J].中国植保导刊, 2012, 32(3):15-18. doi: 10.3969/j.issn.1672-6820.2012.03.003

    JIA M H, ZHANG H, ZHANG A H, et al. Research progress on plant secondary metabolites in field of pesticide development in China[J]. China Plant Protection, 2012, 32(3):15-18. doi: 10.3969/j.issn.1672-6820.2012.03.003
    [25]
    PATCHARAPORN V. Insecticidal activity of five chinese medicinal plants against Plutella Xylostella L. (Lepidoptera: Plutellidae)[D]. Chongqing: Southwest University, 2010. https://www.sciencedirect.com/science/article/abs/pii/S1226861509001174
    [26]
    ISMAN M B, WAN A J, PASSREITER C M. Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura[J]. Fitoterapia, 2001, 72(1):65-68. doi: 10.1016/S0367-326X(00)00253-7
    [27]
    黄继光, 杨文杰, 桑晓清, 等.从羽裂蟹甲草分离的9种化合物的杀虫活性[J].华南农业大学学报, 2014, 35(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201401012

    HUANG J G, YANG W J, SANG X Q, et al. Insecticidal activities of nine compounds extracted from Cacalia tangutica[J]. Journal of South China Agricultural University, 2014, 35(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201401012
    [28]
    GADE S, RAJAMANIKYAM M, VADLAPUDI V, et al. Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata[J]. Biochimica et Biophysica Acta-General Subjects, 2017, 1861(3):541-550. doi: 10.1016/j.bbagen.2016.11.044
    [29]
    TONG F, GROSS A D, DOLAN M C, et al. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor[J]. Pest Management Science, 2013, 69(7):775-780. doi: 10.1002/ps.3443
    [30]
    黄露.苦参碱对家蚕的毒害作用研究[D].泰安: 山东农业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10434-1014341692.htm

    HUANG L. Study on matrine toxicity to Bombyx mori L.[D]. Taian: Shandong Agricultural University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10434-1014341692.htm
    [31]
    穆荣娟.7种苦豆子生物碱对豆蚜Aphis Craccinora Koch几种酶系的影响[D].杨凌: 西北农林科技大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10712-1014430152.htm

    MU R J. Effect of seven alkaloids from Sophora alopecuroids on several enzymes of Aphis craccinora Koch[D]. Yangling: Northwest A&F University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10712-1014430152.htm
    [32]
    罗万春, 慕立义, 李云寿.植物源生物碱的杀虫作用[J].农药, 1997, 11(7):8-12. http://d.old.wanfangdata.com.cn/Conference/352583

    LUO W C, MU L Y, LI Y S. Insecticidal effects of plant alkaloids[J]. Pesticides, 1997, 11(7):8-12. http://d.old.wanfangdata.com.cn/Conference/352583
    [33]
    李春梅, 郁建平.血根碱对菜青虫的生物活性[J].安徽农业科学, 2012, 40(31):15245-15246. doi: 10.3969/j.issn.0517-6611.2012.31.057

    LI C M, YU J P. Bioactivity of sanguinarine against Pieris rapae L.[J]. Journal of Anhui Agricultural Sciences, 2012, 40(31):15245-15246. doi: 10.3969/j.issn.0517-6611.2012.31.057
  • Cited by

    Periodical cited type(11)

    1. 程亮,施晨曦,周鑫,兰济乐,张盼盼,谢慧淼,沈晓霞,阮叶萍. 复方驱蚊精油化学成分分析及其驱避活性评价. 浙江中医药大学学报. 2024(02): 147-153 .
    2. 陈磊,常静,王振,李清宇,周洪友,李海平. 西伯利亚龟象取食对荞麦不同抗感品种生化物质的影响. 植物保护. 2024(03): 181-187+265 .
    3. 杜宇航,雷敏,曾锐,何达海. 基于VOSviewer和CiteSpace的苦参碱和氧化苦参碱研究热点及发展趋势可视化图谱分析. 成都大学学报(自然科学版). 2024(02): 130-137 .
    4. 谢佳铭,曹传旺,孙丽丽,李明俊,张瑞琼. 舞毒蛾谷胱甘肽S-转移酶的结构预测及其与杨树次生物质的分子对接分析. 南京林业大学学报(自然科学版). 2024(05): 211-220 .
    5. 马天驰,温俊宝. 取食臭椿不同部位对沟眶象和臭椿沟眶象成虫消化解毒酶的影响. 环境昆虫学报. 2023(05): 1446-1454 .
    6. 范能能,王金彦,万年峰,蒋杰贤. 植物次生代谢物对甜菜夜蛾生长发育及解毒酶的影响. 应用昆虫学报. 2022(01): 165-171 .
    7. 武磊,李路莎,王立颖,袁郁斐,陈敏. 没食子酸对美国白蛾幼虫营养效应及解毒酶活性的影响. 环境昆虫学报. 2020(02): 471-479 .
    8. 张方明,曾健勇,吴玥,张婷婷,张国财. 舞毒蛾幼虫对阿维·杀铃脲复合剂胁迫的响应机制. 黑龙江畜牧兽医. 2019(01): 106-110 .
    9. 姚静婷,孔纯,华雪铭,税春,施永海. 水解单宁对暗纹东方鲀摄食偏好、消化代谢和抗氧化能力的效应. 水产学报. 2019(06): 1449-1462 .
    10. 王广,郭苏帆,张祥,刘长仲. 韭菜迟眼蕈蚊危害蚕豆根茎影响豌豆蚜的生长发育. 环境昆虫学报. 2019(03): 664-671 .
    11. 张明发,沈雅琴. 苦参碱类生物碱的毒性研究进展. 药物评价研究. 2018(04): 682-691 .

    Other cited types(14)

Catalog

    Article views (2720) PDF downloads (53) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return