• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Lu-lu, Lu Ting-ting, Wang Shuang, Li Mei-liang, Zhao Shuang-jing, Liu Ying-ying, Wei Zhi-gang. Effects of poplar PsnGA20ox1 overexpression on leaf development of tobacco[J]. Journal of Beijing Forestry University, 2018, 40(2): 22-30. DOI: 10.13332/j.1000-1522.20170245
Citation: Liu Lu-lu, Lu Ting-ting, Wang Shuang, Li Mei-liang, Zhao Shuang-jing, Liu Ying-ying, Wei Zhi-gang. Effects of poplar PsnGA20ox1 overexpression on leaf development of tobacco[J]. Journal of Beijing Forestry University, 2018, 40(2): 22-30. DOI: 10.13332/j.1000-1522.20170245

Effects of poplar PsnGA20ox1 overexpression on leaf development of tobacco

More Information
  • Received Date: September 13, 2017
  • Revised Date: November 08, 2017
  • Published Date: January 31, 2018
  • ObjectiveGA20ox is one of the genes coding key rate-limiting enzymes, GA20-oxidases (GA20ox), for biosynthesis of bioactive gibberellins (GA) which involve in many biology process of plant growth and development. At present, it is still not clear that the biological function of GAs in plant leaf development. The aim of this research is to reveal the roles of PsnGA20ox1 in the leaves of overexpression tobacco.
    MethodIn this study, we systematically analyzed the leaf size, ultrastructure, biomass, chlorophyll and bioactivity GAs contents, and gene expression level involved in cell division and stomatal formation of PsnGA20ox1 overexpression tobacco and wild-type plants.
    ResultOur results revealed that the PsnGA20ox1 overexpression tobacco displayed the enlarged leaf size, enhanced chlorophyll and GA4 contents, and decreased epidermal cell size. In addition, the thickness of palisade and spongy parenchyma, the sizes of epidermal cell, the numbers of stomatal and epidermal cell, and photosynthesis and leaf biomass productivity of PsnGA20ox1 overexpression tobacco were notably increased compared with wild-type tobacco, respectively. Furthermore, the expression levels of genes involved in cell division and stomatal formation in PsnGA20ox1 overexpression tobacco altered notably, and the variation tendency was in accordance with the alternations of leaf trait.
    ConclusionThe results demonstrated that the overexpression of PsnGA20ox1 had effect on the structure and development of leaf in the transgenic tobacco, which is beneficial to the accumulation of biomass of leaf.
  • [1]
    Hedden P, Kamiya Y. Gibberellin biosynthesis: enzymes, genes and their regulation[J]. Annual Review of Plant Physiology Plant Molecular Biology, 1997, 48: 431-460. doi: 10.1146/annurev.arplant.48.1.431
    [2]
    MacMillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria[J]. Journal of Plant Growth Regulation, 2001, 20(4): 387-442. doi: 10.1007/s003440010038
    [3]
    Xiao Y H, Ye Y F, Yi F, et al. Functional expression of the cotton gibberellic acid oxidase homologous gene GhGA20ox1 in tobacco[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32 (5): 563-569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxb200605009
    [4]
    邓伟, 吕立堂, 罗克明, 等.棉花GA20-氧化酶基因转毛白杨的研究[J].西北植物学报, 2008, 28(6):1095-1110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb200806004

    Deng W, Lü L T, Luo K M, et al. Transformation of gibberellin 20-oxidase gene of cotton into Chinese white poplar[J].Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(6):1095-1110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb200806004
    [5]
    Spielmeyer W, Ellis M H, Chandler P M. Semidwarf(sd-1), 'green revolution'rice, contains a defective gibberellin 20-oxidase gene[J].PNAS, 2002, 99(13):9043-9048. doi: 10.1073/pnas.132266399
    [6]
    严远鑫, 安成才, 栗力.水稻赤霉素20-氧化酶(rga5)正、反义转化对水稻生物学性状的影响[J].科学通报, 2004, 48(4):358-363. doi: 10.3321/j.issn:0023-074X.2004.04.011

    Yan Y X, An C C, Li L.Rice gibberellin 20-oxidase (rga5) sense, antisense transformation effect on biological character of rice[J].Chinese Science Bulletin, 2004, 48(4):358-363. doi: 10.3321/j.issn:0023-074X.2004.04.011
    [7]
    谈心, 杨宏, 乔定君, 等.干扰烟草GA20-氧化酶siRNA植物表达载体的构建及矮化烟草的产生[J].应用与环境生物学报, 2008, 14(1):48-52. doi: 10.3321/j.issn:1006-687X.2008.01.009

    Tan X, Yang H, Qiao D J, et al.Construction of siRNA plant expression vector interfered with GA20-oxidase and production of dwarf tobacco[J].Chinese Journal of Applied and Environmental Biology, 2008, 14(1):48-52. doi: 10.3321/j.issn:1006-687X.2008.01.009
    [8]
    Jeon H W, Cho J S, Park E J, et al. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase1 from Pinus densiflora, improves woody biomass production in a hybrid poplar[J]. Plant Biotechnology Journal, 2015, 1:1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1aa18e3a399b1685d61dae98b9208717
    [9]
    冯怡.棉花GA20-氧化酶基因GhGA20ox1的超量表达及其对番茄果实发育的影响[D].重庆: 西南农业大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10625-2005089809.htm

    Feng Y. Overexpression of a cotton GA 20-oxidase gene(GhGA20ox1) and its effects on tomato fruit develpoment[D]. Chongqing: Southwest Agriculture University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10625-2005089809.htm
    [10]
    Qiao F, Chen Z. Alteration of rice growth and development via antisense expression of OsGA20ox2 gene[J]. African Journal of Biotechnology, 2013, 12(25):3898-3904.
    [11]
    王月华.结缕草GA20氧化酶基因的克隆及遗传转化研究[D].北京: 北京林业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10022-2007077347.htm

    Wang Y H. Studied on cloning and genetic transformation of gibberellin 20 oxidase gene from zoysiagrass(Zoysia japonica Steud.)[D].Beijing: Beijing Forestry University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10022-2007077347.htm
    [12]
    张力杰, 张凯旋, 魏志刚.小黑杨PnsGA20ox1基因的克隆及功能分析[J].南京林业大学学报(自然科学版), 2013, 37(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201306003

    Zhang L J, Zhang K X, Wei Z G. Cloning and function analysis of PsnGA20ox1 gene in Populus simonii×P.nigra[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201306003
    [13]
    张志良, 瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社, 2003.

    Zhang Z L, Qu W J.Experimental guide for plant physiology[M].Beijing:Higher Education Press, 2003.
    [14]
    张容, 郑彦峰, 吴瑶, 等.一种简单有效的植物RNA提取方法[J].遗传, 2006, 28(5):583-586. doi: 10.3321/j.issn:0253-9772.2006.05.015

    Zhang R, Zheng Y F, Wu Y, et al. A simple and efficient method for preparation of plant RNAs[J]. Hereditas (Beijing), 2006, 28(5):583-586. doi: 10.3321/j.issn:0253-9772.2006.05.015
    [15]
    Masle J, Gilmore S R, Farquhar G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J].Nature, 2005, 436:866-870. doi: 10.1038/nature03835
    [16]
    Shpak E D, McAbee J M, Pillitteri L J, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Science, 2005, 309:290-293. doi: 10.1126/science.1109710
    [17]
    Umbrasaite J, Schweighofer A, Kazanaviciute V, et al. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis[J]. PLoS One, 2010, 5(12): e15357. doi: 10.1371/journal.pone.0015357
    [18]
    Hara K, Kajita R, Torii K, et al. The secretory peptide gene EPF1 enforces the stomatalone-cell-spacing rule[J]. Genes Dev, 2007, 21(14): 1720-1725. doi: 10.1101/gad.1550707
    [19]
    Hara K, Yokoo T, Kajita R, et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves[J]. Plant Cell Physiol, 2009, 50(6): 1019-1031. doi: 10.1093/pcp/pcp068
    [20]
    Sugano S S, Shimada T, Imai Y, et al. Stomagen positively regulates stomatal density in Arabidopsis[J]. Nature, 2010, 463: 241-244. doi: 10.1038/nature08682
    [21]
    Liu T, Ohashi-Ito K, Bergmann D C. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses[J]. Development, 2009, 136(13): 2265-2276. doi: 10.1242/dev.032938
    [22]
    Kanaoka M M, Pillitteri L J, Fujii H, et al.SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation[J]. Plant Cell, 2008, 20(7): 1775-1785. doi: 10.1105/tpc.108.060848
    [23]
    赵学彩.杨树D类周期蛋白基因Poptr; CYCD1;1的RNAi与Poptr; CYCD3; 3的过表达研究[D].哈尔滨: 东北林业大学, 2014. http://cdmd.cnki.com.cn/article/cdmd-10225-1014408984.htm

    Zhao X C. Characterization of expression of D-type cyclin gene Poptr; CYCD1;1 and Poptr; CYCD3;3 from poplar[D]. Harbin: Northeast Forestry University, 2014. http://cdmd.cnki.com.cn/article/cdmd-10225-1014408984.htm
    [24]
    Fagoaga C. Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture[J].Journal of Experimental Botany, 2007, 58(6):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=610b9a1037dc001c4f0d395912aac5f6
    [25]
    Biemelt S.Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants[J].Plant Physiology, 2004, 135 (1):254-265. doi: 10.1104/pp.103.036988
    [26]
    蒋超, 卢天成.赤霉素在非生物胁迫中的作用[J].生物技术通报, 2016, 32(5):11-15. http://d.old.wanfangdata.com.cn/Periodical/swjstb201605002

    Jiang C, Lu T C. The function of gibberellins signaling in responses to abiotic stresses[J]. Biotechnology Bulletin, 2016, 32(5):11-15. http://d.old.wanfangdata.com.cn/Periodical/swjstb201605002
    [27]
    Vidal A M, Gisbert C, Talón M, et al. The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco[J]. Physiologia Plantarum, 2011, 112(2):251-260. http://cn.bing.com/academic/profile?id=bc9f85eb221dd9d1f7d845615bcd5e26&encoded=0&v=paper_preview&mkt=zh-cn
    [28]
    Rodrigo M J, Garcia Martinez J L, Santes C. The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds[J]. Planta, 1997, 201(6):446-455 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ0211875857
    [29]
    Jeremy P, Phillips C A L, Croker S J, et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes[J]. Plant Journal, 1999, 17(5):547-556. doi: 10.1046/j.1365-313X.1999.00410.x
    [30]
    Jordan E T. Phytochrome A overexpression in transgenic tobacco (correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuatted gibberellin levels)[J]. Plant Physiol, 1995, 107:797-805. doi: 10.1104/pp.107.3.797
    [31]
    Vidal A M, Bencheikh W, Talón M, et al. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid[J]. Planta, 2003, 217(3):442-448. doi: 10.1007/s00425-003-0999-2
    [32]
    Eriksson M E. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length[J]. Nature Biotechnology, 2000, 18:784-788. doi: 10.1038/77355
    [33]
    Saibo N. Growth and stomata development of Arabidopsis are controlled by gibberellins and modulated by ethylene and auxins[J]. The Plant Journal, 2003, 33:989-1000. doi: 10.1046/j.1365-313X.2003.01684.x
    [34]
    Biemelt S, Tschiersch H, Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants[J]. Plant Physiology, 2004, 135:254-265. doi: 10.1104/pp.103.036988
    [35]
    Kim T H. Guard cell signal transduction network: advance in understanding abscisic acid, CO2, and Ca+ signaling[J]. Annual Review of Plant Biology, 2010, 61:561-591. doi: 10.1146/annurev-arplant-042809-112226
    [36]
    Gudesblat.SPEECHLESS integrates brassinosteroid and stomatal signaling pathways[J].Nature Cell Biology, 2012, 14(5):548-554. doi: 10.1038/ncb2471
    [37]
    Kim T H. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway[J]. Nature, 2012, 482:419-422. doi: 10.1038/nature10794
    [38]
    Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in grass[J]. Journal of Experimenal Botany, 2008, 59:3317-3325. doi: 10.1093/jxb/ern185
    [39]
    Zhang J Y. Auxin inhibits stomatal development through MONOPTEROS repression of mobile peptide gene STOLAGEN in mesophyll[J]. PNAS, 2014, 111(29):3015-3023. doi: 10.1073/pnas.1400542111
    [40]
    张彤, 赵琳.植物DELLA蛋白的功能及其在大豆中的研究[J].大豆科学, 2011, 30(5):874-879. http://d.old.wanfangdata.com.cn/Periodical/ddkx201105035

    Zhang T, Zhao L. Function of plant DELLA protein and its research advancement in soybean[J]. Soybean Science, 2011, 30(5):874-879. http://d.old.wanfangdata.com.cn/Periodical/ddkx201105035
    [41]
    Yang T, Davies P J, Reid J B. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas[J]. Plant Physiol, 1996, 110:1029-1034. doi: 10.1104/pp.110.3.1029
  • Related Articles

    [1]Gong Xiaoqing, Xie Rong, Yang Hua. Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 1-10. DOI: 10.12171/j.1000-1522.20210479
    [2]Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112
    [3]Shi Mengmeng, Yang Hua, Wang Quanjun, Yang Chao. Spatial distribution and association of seedlings and saplings in a spruce-fir forest in the Changbai Mountains area of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 1-11. DOI: 10.12171/j.1000-1522.20190071
    [4]ZHANG Jian-liang, CUI Guo-fa, HUANG Xiang-tong, GUO Zi-liang, ZHOU Hai-cheng. Population structure and dynamic prediction of Pinus sylvestrisformis listed at first-class state protected plant in Changbai Mountain National Nature Reserve, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(3): 26-33. DOI: 10.13332/j.cnki.jbfu.2014.03.004
    [5]DU Zhi, KANG Xin-gang, BAO Yu-jun, YANG Xin-xia. Spatial distribution patterns and associations of tree species during different succession stages in sprucefir forests of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(2): 14-19.
    [6]REN Jun, XU Cheng-yang, PAN Lin, LIN Yu-mei, ZHANG Lin, WANG Xiao-na. Root respiration of Fraxinus mandushurica and its controls in broadleaf-Korean pine mixed forest of Changbai mountains[J]. Journal of Beijing Forestry University, 2011, 33(1): 11-15.
    [7]SONG Xin-zhang, ZHANG Hui-ling, XIAO Wen-fa, GUO Zhong-ling, HUANG Zhi-lin, LEI Jing-pin. Seed bank in the logging gaps of broadleavedKorean pine mixed forests in Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(2): 17-24.
    [8]CHANG Xin-hua, ZHAO Xiu-hai, ZENG Fan-yong, ZHANG Chun-yu. Spatial distribution of main tree species and their environmental interpretations in conifer and broadleaved mixed forests of Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(1): 7-12.
    [9]CAO Wei, LI Yuanyuan. Vertical pattern of flora from Changbai Mountain, China.[J]. Journal of Beijing Forestry University, 2008, 30(4): 53-58.
    [10]YANG Li-yun, LI Wen-hua. Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China[J]. Journal of Beijing Forestry University, 2005, 27(2): 1-5.
  • Cited by

    Periodical cited type(8)

    1. 袁然,梁映红,傅童成,胡生龙,汪盛,易自力,李蒙. 南荻水热液化耦合酶解联产多种纤维糖. 中国造纸. 2024(11): 71-80 .
    2. 张婷,孙德娇,王彩衣,黄鑫,陈少强,黎飞望,杨齐. 甘蔗渣制备低聚木糖的工艺优化. 广西科学. 2023(04): 727-734 .
    3. 童欣怡,李琦,陈文倩,赵林果. 杨木屑木聚糖碱法提取及其制备低聚木糖的工艺研究. 林业工程学报. 2020(01): 61-68 .
    4. 朱增科,平清伟,张健,盛雪茹,李娜,石海强. 乙醇-水抽提法分离毛竹枝桠材组分的研究. 中国造纸. 2020(08): 52-56 .
    5. 张威伟,张波,张乐平,蒋建新. 非酶法催化木质纤维原料转化制备低聚木糖研究进展. 林产化学与工业. 2020(06): 118-128 .
    6. 邓元元,胡超,陈思宇,朱文娟,王刚,兰时乐. 啤酒糟制备低聚木糖功能饲料添加剂酶解条件优化. 中国饲料. 2019(09): 54-62 .
    7. 陈冰炜,阚玉娜,袁诚,王新洲,黄曹兴,梅长彤,翟胜丞. 乙醇预处理对芦竹细胞壁的影响及荧光可视化分析. 林业工程学报. 2019(04): 59-65 .
    8. 刘洋,胡小文,姚艳丽. NaOH预处理对甘蔗渣成分和酶解效率的影响. 甘蔗糖业. 2019(06): 28-38 .

    Other cited types(4)

Catalog

    Article views (2076) PDF downloads (96) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return