• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Geng Dan, Xia Chaozong, Zhang Guobin, Liu Xiaodong, Kang Fengfeng. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34-41. DOI: 10.13332/j.1000-1522.20170257
Citation: Geng Dan, Xia Chaozong, Zhang Guobin, Liu Xiaodong, Kang Fengfeng. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34-41. DOI: 10.13332/j.1000-1522.20170257

Biomass model construction of shrub layer of Chinese fir plantation

More Information
  • Received Date: September 05, 2017
  • Revised Date: November 30, 2017
  • Published Date: February 28, 2018
  • ObjectiveThe study selected Chinese fir plantations in Hunan Province, Anhui Province and Jiangxi Province of southern China as the research object to establish estimation models between the investigation factors of the tree-shrub layer and its biomass.The study tried to build a more reliable and accurate models for biomass estimation of shrub layer and provided reference for improving the accuracy of models for biomass estimation of shrub layer under Chinese fir plantation.
    MethodA typical sample survey was conducted in the study area and the canopy density Cs, stand density Ds(plant/ha), average height H(m), average diameter D(cm), cover degree C, fresh and dry mass (kg) of shrub branches, stems, leaves, roots were determined in this study.Through the calculation, the stock volume of tree layer V (m3/ha)and the biomass of shrub layer (t/ha) were obtained.The effects of shrub layer structure and arbor layer investigation factors on shrub biomass were analyzed by Pearson's correlation, and the optimal shrub layer structure parameters were selected as model parameters to establish the models for estimation of branch, stem, aboveground and underground biomass.The arbor layer surveying factors were added into the model as an independent variable to compare and analyze the changes of R2 after arbor layer investigation factors were added. The models were tested with extra-sample data to construct a more accurate model for estimating shrub biomass.
    ResultThe results showed that the biomass model of shrub layer was dominated by power function, and the under-ground biomass of each forest age shrub layer was obtained, R2 was 0.516-0.955 with independent variable D2H. The rest biomass got a good fitting model fitted with CH as the independent variable, R2 was 0.516-0.718. Compared with the models for estimating biomass of shrub layer using structural factors of irrigation alone as independent variables, except underground biomass, the adding of average diameter Dm of young-middle age forest tree layer, as a variable, made the accuracy of models for other component increased significantly, R2 was 0.718-0.990;the adding of canopy density Cs of mature age tree layer, as a variable made the accuracy of models for other component increased significantly, R2 was 0.817-0.886.
    ConclusionTherefore, if we evaluate and analyze the shrub biomass in the subtropical shrub layer, not only the relationship between the structural biomass of the shrub layer itself should be considered, but also the influence of the relevant factors in the arbor layer should be taken into account to establish a biological structure more consistent with the shrub biology and ecology.This study may provide a reference for the estimation of shrub biomass in the subtropical area of Chinese fir plantation.
  • [1]
    李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源, 1978(1):71-92. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY197801007.htm

    Li W H. The concept of forest biological production and its basic approach to research[J]. Natural Resources, 1978(1): 71-92. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY197801007.htm
    [2]
    张峰, 上官铁梁, 李素.关于灌木生物量建模方法的改进[J].生态学报, 1993, 12(6): 67-69. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ199306015.htm

    Zhang F, Shangguan T L, Li S. Improvement on the modeling method of biomass of brush[J].Journal of Ecology, 1993, 12(6): 67-69. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ199306015.htm
    [3]
    Lieth H, Whittaker R H. Primary productivity of the biosphere[M]. New York: Springer-Verlag, 1975:421-428.
    [4]
    Alaback P B. Biomass regression equations for understory plants in coastal Alaska: effects of species and sampling design on estimates[J]. Northwest Science, 1986, 60(2): 90-103 http://cn.bing.com/academic/profile?id=db9766645749b0e6695c289ae017e40b&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    杨昆, 管东生.林下植被的生物量分布特征及其作用[J].生态学杂志, 2006, 25(10): 1252-1256. doi: 10.3321/j.issn:1000-4890.2006.10.019

    Yang K, Guan D S. Biomass distribution and its functioning of understory vegetation[J]. Journal of Medicine, 2006, 25(10): 1252-1256. doi: 10.3321/j.issn:1000-4890.2006.10.019
    [6]
    邹春静, 卜军, 徐文铎.长白松人工林群落生物量和生产力的研究[J].应用生态学报, 1995, 6(2): 123-127. doi: 10.3321/j.issn:1001-9332.1995.02.002

    Zou C J, Bu J, Xu W D. Biomass and productivity of Pinus sylvestriformis plantation[J]. Journal of Applied Ecology, 1995, 6(2): 123 -127. doi: 10.3321/j.issn:1001-9332.1995.02.002
    [7]
    贺金生, 王其兵, 胡东.长江三峡地区典型灌丛的生物量及其再生能力[J].植物生态学报, 1997, 21(6): 512-520. doi: 10.3321/j.issn:1005-264X.1997.06.003

    He J S, Wang Q B, Hu D. Studies on the biomass of typical of shurbland and their regeneration capacity after cutting[J]. Journal of Plant Ecology, 1997, 21(6): 512-520. doi: 10.3321/j.issn:1005-264X.1997.06.003
    [8]
    方江平, 项文化.西藏色季拉山原始冷杉林生物量及其分布规律[J].林业科学, 2008, 44(5): 17-23. doi: 10.3321/j.issn:1001-7488.2008.05.006

    Fang J P, Xiang W H. Biomass and its distribution of a primeval Abies georgei var. smithii forest in Sejila Mountain in Tibet Plateau[J]. Scientia Silvae Sinicae, 2008, 44(5): 17-23. doi: 10.3321/j.issn:1001-7488.2008.05.006
    [9]
    张海清, 刘琪璟, 陆佩玲.千烟洲试验站几种常见灌木生物量估测[J].林业调查规划, 2005, 30(5):43-49. doi: 10.3969/j.issn.1671-3168.2005.05.013

    Zhang H Q, Liu Q J, Lu P L.Biomass estimition of several commom shurbs in Qiantanzhou Experimental Station[J]. Forestry Investigation and Planning, 2005, 30(5): 43-49. doi: 10.3969/j.issn.1671-3168.2005.05.013
    [10]
    张倩媚, 温达志, 叶万辉.南亚热带常绿阔叶林林下层植物的生物量及其测定方法的探讨[J].生态科学, 2000, 19(4):62-66. doi: 10.3969/j.issn.1008-8873.2000.04.010

    Zhang Q M, Wen D Z, Ye W H. Study on biomass and determination method of understory plant in evergreen broadleaved forest of subtropical South China[J]. Ecological Science, 2000, 19(4): 62-66. doi: 10.3969/j.issn.1008-8873.2000.04.010
    [11]
    Josohi S P, Mandal G. Estimation of above-ground biomass and carbon stock of an invasive woody shrub in the subtropical deciduous forests of Doon Valley, western Himalaya, India[J]. Journal of Forestry Research, 2015, 26(2):291-305. doi: 10.1007/s11676-015-0038-8
    [12]
    Liu Z, Chen R, Song Y, et al. Estimation of aboveground biomass for alpine shrubs in the upper reaches of the Heihe Basin, northwestern China[J].Environment Earth Sciences, 2014, 73(9):5513-5521 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3696999433347273ef2bc93613c455d5
    [13]
    刘凤娇.长白落叶松人工林林下植被生物量与多样性研究[D].北京: 北京林业大学, 2011.

    Liu F J. Study on biomass and diversity of undergrowth vegetation in Larix olgensis plantation[D]. Beijing: Beijing Forestry University, 2011.
    [14]
    费玲, 钟全林, 程栋梁, 等.天然阔叶林与杉木人工林灌木层地上地下生物量的分配关系[J].林业科学, 2016, 52(3):97-98. http://d.old.wanfangdata.com.cn/Periodical/lykx201603012

    Fei L, Zhong Q L, Cheng D L, et al. Biomass allocation between aboveground-and underground of shrub layer vegetation in natural evergreen broad-leaved forest and Chinese fir plantation[J]. Scientia Silvae Sinicae, 2016, 52(3): 97-98. http://d.old.wanfangdata.com.cn/Periodical/lykx201603012
    [15]
    仇瑶, 常顺利, 张毓涛, 等.天山林区六种灌木生物量的建模及其器官分配的适应性[J].生态学报, 2015, 35(23):7843-7850. http://d.old.wanfangdata.com.cn/Periodical/stxb201523028

    Qiu Y, Chang S L, Zhang Y T, et al. Biomass estimation modeling and adaptability analysis of organ allocation in six common shrub species in Tianshan Mountains forests, China[J].Acta Ecologica Sinica, 2015, 35(23): 7843-7850. http://d.old.wanfangdata.com.cn/Periodical/stxb201523028
    [16]
    万五星, 王效科, 李东义, 等.暖温带森林生态系统林下灌木生物量相对生长模型[J].生态学报, 2014, 34(23) 6986-6988. http://d.old.wanfangdata.com.cn/Periodical/stxb201423022

    Wan W X, Wang X K, Li D Y, et al. Biomass allometric models for understory shrubs of warm temperate forest ecosystem[J]. Journal of Ecology, 2014, 34(23): 6986-6988. http://d.old.wanfangdata.com.cn/Periodical/stxb201423022
    [17]
    崔玲玲, 土艳丽, 拉多, 等.拉萨河流域6种典型灌木生物量预测模型的建立[J].西藏科技, 2017(7):64-68. doi: 10.3969/j.issn.1004-3403.2017.07.023

    Cui L L, Tu Y L, La D, et al. The model of prediction of 6 types of shrimp resigns in Lhasa River Basin[J]. Tibet Science and Technology, 2017(7): 64-68. doi: 10.3969/j.issn.1004-3403.2017.07.023
    [18]
    Rottgermann M, Steinlein T, Beyschlag W, et al.Linear relationships between aboveground biomass and plant cover in low open herbaceous vegetation[J]. Journal of Vegetation Science, 2000, 11(1):145-148. doi: 10.2307/3236786
    [19]
    Pieper R D.Overstory-understory relations in pinyon-juniper woodlands in New Mexico[J]. Journal of Range Management, 1990, 43(5): 413-415. doi: 10.2307/3899002
    [20]
    Mitchell J E, Popovich S J.Effectiveness of basal area for estimating canopy cover of ponderosa pine[J]. Forest Ecology and Management, 1997, 95(1): 45-51. doi: 10.1016/S0378-1127(97)00002-9
    [21]
    Adrian A, Andrewr N, Klausj P. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands[J]. Forest Ecology and Management, 2010, 260(7): 1104-1113. doi: 10.1016/j.foreco.2010.06.023
    [22]
    金艳强, 包维楷.四川柏木人工林林下植被生物量与林分结构的关系[J].生态学报, 2014, 34(20):5849-5859. http://d.old.wanfangdata.com.cn/Periodical/stxb201420019

    Jin Y Q, Bao W K. Relationships of the understory biomass with stand structure of the Sichuan cypress plantation forests across Sichuan Basin, China[J].Acta Ecologica Sinica, 2014, 34(20): 5849-5859. http://d.old.wanfangdata.com.cn/Periodical/stxb201420019
    [23]
    季蕾, 亢新刚, 张青, 等.吉林金沟岭林场不同密度天然云冷杉林林下主要灌木生物量模型[J].浙江农林大学学报, 2016, 33(3):394-402. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201603004

    Ji L, Kang X G, Zhang Q, et al. Shrub models in a spruce-fir forest of different densities in Jingouling Plantation, Jilin Province[J]. Zhejiang Agriculture and Forestry University, 2016, 33(3): 394-402. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201603004
    [24]
    辛访华.杉木林不同更新方式下土壤呼吸与微生物群落的季节动态[D].福州: 福建农林大学, 2012.

    Xin F H. Seasonal dynamics of soil respiration and microbial communities in different regeneration patterns of Chinese fir[D]. Fuzhou: Fujian Agricultural and Forestry University, 2012.
    [25]
    国家林业局.第八次全国林业资源清查结果[J].林业资源管理, 2014(1):1-2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggly201405002

    State Forestry Administration.The eighth national forest resources inventory results[J]. Forestry Resources Management, 2014(1): 1-2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggly201405002
    [26]
    曾伟, 江斌, 余林, 等.江西杉木人工林生物量分配格局及其模型构建[J].南京林业大学学报(自然科学版), 2016, 40(3):177-182. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201603029

    Zeng W, Jiang B, Yu L, et al. Biomass allocation and its model construction of Cunninghamia lanceolata plantations in Jiangxi Province[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2016, 40(3): 177-182. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201603029
    [27]
    涂宏涛, 孙玉军, 刘素真, 等.亚热带杉木人工林生物量及其碳储量分布:以福建将乐县杉木人工林为例[J].中南林业科技大学学报, 2015, 35(7):94-99. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201507017

    Tu H T, Sun Y J, Liu S Z, et al. Stand biomass and carbon storge distribution of Chinese fir plantation in plantation in subtropical China[J].Journal of Central South University of Forestry and Technology, 2015, 35(7):94-99. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201507017
    [28]
    李晗.中国杉木不同产区栽培制度初步研究[D].福州: 福建农林大学, 2015.

    Li H. Preliminar study on diffierent areas Chinese fir cultivation system.[D]. Fuzhou: Fujian Agricultural and Forestry University, 2015.
    [29]
    曾伟生.国内外灌木生物量模型研究综述[J].世界林业研究, 2015, 28(1):31-36. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201501006

    Zeng W S. A review of studies of shrub biomass modeling[J]. World Forestry Research, 2015, 28(1): 31-36. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201501006
    [30]
    卢振龙, 龚孝生.灌木生物量测定的研究进展[J].林业调查规划, 2009, 34(4):37-45. doi: 10.3969/j.issn.1671-3168.2009.04.011

    Lu Z L, Gong X S. Progress on the research of shrub biomass estimation[J]. Forestry Investigation and Planning, 2009, 34(4): 37-45. doi: 10.3969/j.issn.1671-3168.2009.04.011
    [31]
    曾伟生, 唐守正.立木生物量模型的优度评价和精度分析[J].林业科学, 2011, 47(11): 106-113. doi: 10.11707/j.1001-7488.20111117

    Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106-113. doi: 10.11707/j.1001-7488.20111117
    [32]
    Warton D I, Wright I J, Falster D S, et al. Bivariate linefitting methods for allometry[J]. Biological Reviews, 2006, 81:259-291. http://cn.bing.com/academic/profile?id=0853aedb0aa6d9b0111b4b423b541495&encoded=0&v=paper_preview&mkt=zh-cn
    [33]
    蔡哲, 刘琪璟, 欧阳球林.千烟洲试验区几种灌木生物量估算模型的研究[J].中南林学院学报, 2006.26(3):15-18. doi: 10.3969/j.issn.1673-923X.2006.03.003

    Cai Z, Liu Q J, Ouyang Q L. Estimation model for biomass of shrubs in Qianyanzhou Experiment Station[J]. Central South Forestry University, 2006, 26(3):15-18. doi: 10.3969/j.issn.1673-923X.2006.03.003
    [34]
    Warton D I, Wright I J, Falsteret D S, et al. Analysis of influencing factors of undergrowth biomass in Cunninghamia lanceolata plantations[J].Journal of Fujian Forestry Science and Technology, 2007, 34(3): 97-99, 149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjlykj200703024
    [35]
    Warton D I, Wright I J, Falster D S, et al.Overstory-understory biomass changes over 35-year period in southcentral Oregon[J], Forest Ecology and Management, 2001, 150(3): 267-277. doi: 10.1016/S0378-1127(00)00585-5
    [36]
    Wagner S, Fischer H, Huth F.Canopy effects on vegetation caused by harvesting and regeneration treatments[J].European Journal of Forest Research, 2011, 130(1): 17-40. doi: 10.1007/s10342-010-0378-z
    [37]
    李晓娜, 国庆喜, 王兴昌, 等.东北天然次生林下木树种生物量的相对生长[J].林业科学, 2010, 46(8):22-32. http://d.old.wanfangdata.com.cn/Periodical/lykx201008004

    Li X N, Guo Q X, Wang X C, et al. Allometry of understory tree species in a natural secondary forest in northeast China[J]. Scientia Silvae Sinicae, 2010, 46(8): 22-32. http://d.old.wanfangdata.com.cn/Periodical/lykx201008004
    [38]
    Klinkhamer P G L.Plant allometry: the scaling of form and process[D]. Chicago: University of Chicago Press, 1994
    [39]
    郑海富.林下灌木生物量方程的验证和生物量分布格局研究[D].哈尔滨: 东北林业大学, 2010.

    Zheng H F. The study on validation of understory shurb's biomass equations and biomass distribution patterns for understory shurbs[D]. Habin: Northeast Forestry University, 2010.
  • Related Articles

    [1]Wang Yuning, Feng Tianjiao, Sun Long, Liu Xiru, Liu Yabo, Wang Ping. Differences and influencing factors of understory vegetation species diversity between typical plantations and natural forests in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240228
    [2]Zhang Zixuan, Meng Xiaoqian, Zhang Xinna, Xu Chengyang, Chen Tao, Wang Wenxue, Ning Qiuling. Responses of phyllosphere microbial communities in understory vegetation under plant life form and light intensity[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250088
    [3]Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. DOI: 10.12171/j.1000-1522.20200249
    [4]Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. DOI: 10.13332/j.1000-1522.20190022
    [5]Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. DOI: 10.13332/j.1000-1522.20180287
    [6]SUN Cao-wen, JIA Li-ming, YE Hong-lian, GAO Yuan, XIONG Chen-yan, WENG Xue-huang. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits.[J]. Journal of Beijing Forestry University, 2016, 38(12): 73-83. DOI: 10.13332/j.1000-1522.20160143
    [7]LIU Hai-yan, WEI Tian-xing, WANG Xian. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28-35. DOI: 10.13332/j.1000--1522.20150262
    [8]ZHOU Xiao-jing, LI Ke, FAN Hang, LIU Tong, LI Chun-fang, MA Chao, LIU Yu-jun. Composition and amounts of fatty acids in Perilla frutescens seed oils of different varieties and areas.[J]. Journal of Beijing Forestry University, 2015, 37(1): 98-114. DOI: 10.13332/j.cnki.jbfu.2015.01.005
    [9]LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24.
    [10]LU Shao-wei, WANG Xiong-bin1, YU Xin-xiao1, LU Shao-bo1, 3, LI Jin-hai4, WU Jun4. Influence of closing hillsides on vegetation diversity restoration in artificial coniferous forests.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 121-126.
  • Cited by

    Periodical cited type(22)

    1. 陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
    2. 陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
    3. 吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
    4. 吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
    5. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    6. 韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
    7. 张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
    8. 刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
    9. 周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 . 本站查看
    10. 郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 . 本站查看
    11. 焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
    12. 洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
    13. 吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 . 本站查看
    14. 李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
    15. 张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 . 本站查看
    16. 陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
    17. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
    18. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
    19. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
    20. 钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 . 本站查看
    21. 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
    22. 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .

    Other cited types(33)

Catalog

    Article views (2478) PDF downloads (105) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return