• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Xi, Qie Guangfa, Jiang Shasha, Zhang Zhe, Li Mingxia. Change of tree species composition in green area of residential quarter within the Fifth Ring in Beijing from 2006 to 2016[J]. Journal of Beijing Forestry University, 2018, 40(7): 9-17. DOI: 10.13332/j.1000-1522.20170381
Citation: Li Xi, Qie Guangfa, Jiang Shasha, Zhang Zhe, Li Mingxia. Change of tree species composition in green area of residential quarter within the Fifth Ring in Beijing from 2006 to 2016[J]. Journal of Beijing Forestry University, 2018, 40(7): 9-17. DOI: 10.13332/j.1000-1522.20170381

Change of tree species composition in green area of residential quarter within the Fifth Ring in Beijing from 2006 to 2016

More Information
  • Received Date: October 13, 2017
  • Revised Date: January 23, 2018
  • Published Date: June 30, 2018
  • ObjectiveWe studied the tree species composition structure in residential areas within the Fifth Ring in Beijing between the year 2006 and 2016, put forward some suggestions about greening of residential areas, and provided reference for planning and restructuring the urban residential green space in the future.
    MethodThe main sites of the study were 23 residential areas within the Fifth Ring in Beijing. Trees and shrubs with the height over 1.5 m were investigated. Main contents of the investigation included species, height, diameter at breast height (DBH), crown diameter, tree amount and pruning extent. We analyzed the density, species richness of trees in 23 sampled plots and frequency, density, coverage, relative frequency, relative density, relative coverage, and average cover area of plants and important values of the 20 dominant species. After that, the related data was compared with that in 2006.
    Result(1) All trees in the 23 residential areas involved 34 families, 61 genera and 85 species. There were 9 799 trees in 23 sample plots. Arbors were 6.2 times of shrubs. The average density of trees was 39 plants/ha, which was 27% higher than a decade ago, and the average density of trees increased by 30%; the tree species increased by 39%, and the proportion of shrubs increased to 1.55 times. (2) The species varieties and amount of 20 main tree species changed greatly from 2006 to 2016. Ornamental and edible trees showed an obvious increase. The tree number of Amygdalus persica var. persica f. duplex, Magnolia denudata, Malus × micromalus, Toona sinensis, Platanus hispanica, Ginkgo biloba increased to 7.07, 6.36, 5.53, 4.90, 3.38 and 3.28 times of year 2006, respectively, and they became the new dominant tree species in the green land of residential area. While the numbers of Populus tomentosa, Platycladus orientalis, Ziziphus jujuba var. inermis, Paulownia tomentosa, Pinus bungeana, which were once dominant tree species reduced sharply to 43.95%, 11.74%, 24.09%, 9.34% and 41.24% of year 2006, respectively. At the same time, the number of Sabina chinensis increased to 5.84 times of ten years ago, showing a completely opposite trend to Platycladus orientalis. Sabina chinensis replaced Platycladus orientalis and became the main new coniferous species in the residential area. (3) Compared with year 2006, the use frequency of 20 major tree species in green land of residential area showed an increasing trend. In which, Sabina chinensis, Amygdalus persica var. persica f. duplex, Magnolia denudata, Platanus hispanica increased evidently and were 22.75, 5.27, 4.25 and 3.15 times of ten years ago, respectively. Although the numbers of Ziziphus jujuba var. inermis, Shibataea chiangshanensis and Diospyros kakiwere were comparatively less and even fewer than 2006, yet their use frequencies increased from 0.44, 0.28, 0.48 to 0.61, 0.67 and 0.67, respectively. (4) The overall coverage and mean plant cover area of 20 main tree species in residential greenbelt both decreased, and the overall coverage decreased by 0.007 and the decreasing amplitude was 7.53%. Among which, the coverage of Populus tomentosa, Ailanthus altissima, Robinia pseudoacacia decreased significantly to 30.51%, 15.38% and 50.00% of year 2006, respectively. Due to severe pruning, mean plant coverage area of Populus tomentosa and Ailanthus altissima decreased to 51.57% and 16.85% of ten years ago, respectively. (5) In 2016, the dominant tree species in green land of residential area are Sophora japonica (Ⅳ=0.529), Fraxinus chinensis (Ⅳ=0.321), Sabina chinensis (Ⅳ=0.212), Populus tomentosa (Ⅳ=0.195), Platanus hispanica (Ⅳ=0.182), Toona sinensis (Ⅳ=0.163). The dominance of Platycladus orientalis and Paulownia tomentosa showed a sharp downward trend, and their importance values decreased from 0.155, 0.107 in 2006 to 0.017, 0.002 in 2016, respectively. The dominant position of Sabina chinensis and Platanus hispanica rose significantly, and their importance values increased by 11.16 and 4.67 times, respectively.
    ConclusionThe overall afforestation situation has been improved in the residential area. The forest density and tree species have increased significantly, and the species structure is more reasonable and grounded now. The numbers of plant-caused sensitized tree species like Populus tomentosa, Ailanthus altissima, Platycladus orientalis and poor growth adaptability tree species decreased gradually, while the number of popular tree species, including Toona sinensis, Ginkgo biloba, Platanus hispanica, Malus × micromalus increased gradually. However, the overall amount of green space in residential areas has not improved effectively, and the overall coverage has decreased by 4.73%. There is still much room for improvement and potential for green space.
  • [1]
    肖路, 王文杰, 张丹, 等.哈尔滨市城市森林树种种类组成特征及配置合理性[J].生态学杂志, 2016, 35(8):2074-2081. http://d.old.wanfangdata.com.cn/Periodical/stxzz201608013

    Xiao L, Wang W J, Zhang D, et al. Urban forest tree species composition and arrangement reasonability in Harbin, northeast China[J]. Acta Ecologica Sinica, 2016, 35(8):2074-2081. http://d.old.wanfangdata.com.cn/Periodical/stxzz201608013
    [2]
    Nowak D J, Hirabayashi S, Bodine A, et al. Tree and forest effects on air quality and human health in the United States[J]. Environmental Pollution, 2014, 93(4):119-129.
    [3]
    郄光发, 任启文, 李伟, 等.北京不同类型居住区树种组成结构及其三维空间配置[J].生态学杂志, 2011, 30(9):1886-1893. http://d.old.wanfangdata.com.cn/Periodical/stxzz201109007

    Qie G F, Ren Q W, Li W, et al. Tree species composition and three-dimensional configure in different types of residential areas in Beijing[J]. Acta Ecologica Sinica, 2011, 30(9):1886-1893. http://d.old.wanfangdata.com.cn/Periodical/stxzz201109007
    [4]
    李英汉, 王俊坚, 陈雪, 等.深圳市居住区绿地植物冠层格局对微气候的影响[J].应用生态学报, 2011, 22(2):343-349. http://d.old.wanfangdata.com.cn/Periodical/yystxb201102011

    Li Y H, Wang J J, Chen X, et al. Effects of green space vegetation canopy pattern on the microclimate in residential quarters of Shenzhen City[J]. Chinese Journal of Applied Ecology, 2011, 22(2):343-349. http://d.old.wanfangdata.com.cn/Periodical/yystxb201102011
    [5]
    毛齐正, 罗上华, 马克明, 等.城市绿地生态评价研究进展[J].生态学报, 2012, 32(17):5589-5600. http://d.old.wanfangdata.com.cn/Periodical/stxb201217033

    Mao Q Z, Luo S H, Ma K M, et al. Research advances in ecological assessment of urban greenspace[J]. Acta Ecologica Sinica, 2012, 32(17):5589-5600. http://d.old.wanfangdata.com.cn/Periodical/stxb201217033
    [6]
    贾宝全, 邱尔发, 张红旗.基于归一化植被指数的西安市域植被变化[J].林业科学, 2012, 48(10): 6-12. doi: 10.11707/j.1001-7488.20121002

    Jia B Q, Qiu E F, Zhang H Q. Xi'an vegetation dynamics based on NDVI[J]. Scientia Silvae Sinicae, 2012, 48(10): 6-12. doi: 10.11707/j.1001-7488.20121002
    [7]
    郄光发.北京建成区城市森林结构与空间发展潜力研究[D].北京: 中国林业科学研究院, 2006.

    Qie G F. Studies on urban forest structure and potential greening space in Beijing built-up area[D]. Beijing: Chinese Academy of Forestry, 2006.
    [8]
    中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2015: 257-259.

    National Bureau of Statistics of the People's Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2015: 257-259.
    [9]
    Lima J M T. Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001-2010[J]. Landscape & Urban Planning, 2013, 120(4):96-106.
    [10]
    杨颖, 王成, 郄光发, 等.城市植源性污染及其对人的影响[J].林业科学, 2008, 44(4):151-155. doi: 10.3321/j.issn:1001-7488.2008.04.027

    Yang Y, Wang C, Qie G F, et al. Plant-caused pollution and its influence on human in urban area[J]. Scientia Silvae Sinicae, 2008, 44(4):151-155. doi: 10.3321/j.issn:1001-7488.2008.04.027
  • Cited by

    Periodical cited type(62)

    1. 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型. 林业科学. 2025(01): 57-69 .
    2. 衣娜娜,毕力格,史金丽,蔡敏,许志丽,郑凤杰,丽娜. 内蒙古大兴安岭飞机冷云增雨潜势预报模型. 干旱区研究. 2025(03): 409-419 .
    3. 王伟武,伏添乐,陈欢. 基于PLUS-InVEST模型的长三角城市群碳储量时空演变与预测. 环境科学. 2025(04): 1937-1950 .
    4. 徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
    5. 张圆圆,龙勤. 云南省森林净碳储量估算及影响因素分析——基于碳源和碳汇双重角度. 绿色科技. 2024(01): 227-231 .
    6. 汪宗顺,张海鹏,岳超,杨红强,张寒. 造林增汇是实现碳中和的成本有效途径吗?——以西北地区为例. 自然资源学报. 2024(03): 731-748 .
    7. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    8. 杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
    9. 于鲁冀,张亚慧,樊雷,王莉,刘莹莹. 河南省森林固碳量与碳汇价值评估. 郑州大学学报(工学版). 2024(03): 7-13 .
    10. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    11. 李林,赵毅,温智峰,刘佳润,魏识广,周景钢,冯嘉谊. 南亚热带常绿阔叶林地上碳储量空间分布特征及其影响因素. 生态学报. 2024(11): 4687-4697 .
    12. 马振华. 基于第7至9次森林资源清查的宁夏森林碳储量动态变化特征. 陕西林业科技. 2024(03): 39-45 .
    13. 郭同方,吴水荣,张超,苏秦. 重点国有林区森林碳储量动态变化及增汇策略分析——以龙江森工为例. 江西农业大学学报. 2024(03): 582-596 .
    14. 贺晨瑞,庞丽峰,谭炳香,黄逸飞,孙学霞. 基于遥感的北京市森林地上碳储量监测. 西北林学院学报. 2024(03): 162-170+265 .
    15. Zhencan ZHENG,Liuwen ZHUANG,Guofang MIAO,Han LIU,Zhiqiang CHENG,Wenyu LI,Rong SHANG,Peng GONG,Jing Ming CHEN. Elevational distribution of forests and its spatiotemporal dynamics in subtropical China from 2000 to 2019. Science China Earth Sciences. 2024(08): 2563-2582 .
    16. 郑振灿,庄留文,缪国芳,刘涵,程志强,李纹宇,商荣,宫鹏,陈镜明. 中国亚热带地区2000~2019年森林海拔分布特征及其时空动态. 中国科学:地球科学. 2024(08): 2604-2624 .
    17. 张亮. 韶关市森林植被碳储量与碳密度动态研究. 林业与环境科学. 2024(05): 88-94 .
    18. 范彩慧,段成波,龙德增,赵润华. 保山市森林生物质碳储量分析. 绿色科技. 2024(20): 68-73 .
    19. 胡兴波,张月,胡长江,李慧波,王光鑫. 西南地区常见林木的固碳经济效益分析. 农村科学实验. 2024(23): 114-116 .
    20. 曹爱平,罗雷,王晓荣,徐立,郑晓敏. 基于湖北第五次森林资源普查数据的森林碳储量研究. 湖北林业科技. 2024(06): 1-6 .
    21. 王媛媛,刘可欣,张湘婕,王艺璇,赵俊玮,徐连杰,郭婷婷,王天意,任志彬,代新竹. 城市森林碳汇估算计量——以长春市为例. 中国城市林业. 2024(06): 116-122 .
    22. 张翔,刘洋,玉山,苏日娜,阿茹汗. 基于无人机激光雷达和多光谱数据的森林树高提取方法研究. 森林工程. 2023(01): 29-36 .
    23. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    24. 陈宏福,韦体,敏正龙,妥永华,高丹丹,蔡勇,杨具田,白日霞,郭鹏辉. 黄河上游太子山国家级自然保护区森林碳储量及碳增汇潜力研究. 西北民族大学学报(自然科学版). 2023(01): 63-70 .
    25. 朱建华,田宇,李奇,刘华妍,郭学媛,田惠玲,刘常富,肖文发. 中国森林生态系统碳汇现状与潜力. 生态学报. 2023(09): 3442-3457 .
    26. 张煜星,王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力. 林业科学. 2023(03): 54-64 .
    27. 简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学. 2023(03): 12-20 .
    28. 刘川. 利用森林资源一类清查数据计算活立木蓄积量的方法及应用研究. 山东林业科技. 2023(03): 69-72 .
    29. 冯源,王连晶. 县域尺度乔木林碳储量及碳汇特征分析——以马关县为例. 西部林业科学. 2023(03): 152-159 .
    30. 罗佩文,熊小雨,刘冰琳. 基于机器学习和生长预测的森林固碳分析和多目标规划管理策略. 科技风. 2023(19): 156-159 .
    31. 汤浩藩,季巍,周卫平,欧阳希,王华,张文晶,许彦红. 主要乔木树种碳储量与碳密度分布特征——以昆明市海口林场为例. 南方林业科学. 2023(03): 6-10+29 .
    32. 王迎辉,孙浩然,解华臻,张岩,卢振生. 小型树苗扦插机的设计. 南方农机. 2023(22): 35-37+57 .
    33. 江晓雨,刘康桢,徐帅. 基于LCA的合肥滨湖国家森林公园的环境评估. 合肥学院学报(综合版). 2023(05): 70-76 .
    34. 李放,孙红召,黄新峰,曹文昱,冯东阳,冯瑞琦. 基于河南省第九次森林资源清查的乔木林碳储量研究. 绿色科技. 2023(17): 151-157 .
    35. 陈晨,时军霞,刘光武. 河南省乔木林碳储量和碳密度研究. 安徽农业科学. 2023(22): 108-111 .
    36. 韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
    37. 朱昳橙. 海寨林场主要乔木树种碳储量和碳密度特征研究. 宁夏农林科技. 2023(12): 24-28 .
    38. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析. 资源与产业. 2022(01): 15-25 .
    39. 徐明锋,苏永新,龚益广,王锋,张少杰,何春梅. 粤西桉阔林乔木层碳密度及其影响因子研究. 林业与环境科学. 2022(01): 1-8 .
    40. 张全斌,周琼芳. “双碳”目标下中国能源CO_2减排路径研究. 中国国土资源经济. 2022(04): 22-30 .
    41. 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学. 2022(02): 32-41 .
    42. 尹海龙,张乃暄,许中旗. 冀北坝上及坝下地区华北落叶松林土壤碳储量的比较. 林业与生态科学. 2022(02): 164-168 .
    43. 刘华超,任春颖,王宗明,张柏. 大兴安岭生态功能区生态系统服务功能动态及权衡协同关系研究. 生态与农村环境学报. 2022(05): 587-598 .
    44. 胡忠宇,苏建兰. 森林植被碳储量研究综述与展望. 农业与技术. 2022(12): 58-62 .
    45. 肖水寒,张驭骁,张佳栋,周甲佳. 基于碳存储量预测的森林经营计划决策模型. 科学技术创新. 2022(23): 165-168 .
    46. Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
    47. 曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
    48. 周静,吕晓琪. 北京大兴区森林植被碳储量计算及价值分析. 绿色科技. 2022(16): 49-52 .
    49. 薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
    50. 雷海清,孙高球,郑得利. 温州市森林生态系统碳储量研究. 南京林业大学学报(自然科学版). 2022(05): 20-26 .
    51. 肖君. 福建省天然乔木林碳储量动态变化及增汇策略. 南京林业大学学报(自然科学版). 2022(05): 27-32 .
    52. 范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 . 本站查看
    53. 张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 . 本站查看
    54. 陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
    55. 荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
    56. 王飞平,张加龙. 基于碳卫星的森林碳储量估测研究综述. 世界林业研究. 2022(06): 30-35 .
    57. 侯瑞萍,陈健,夏朝宗,宋佳庚,黄翔,郑芊卉,安天宇,郝月兰. 2020年京津冀地区林地和其他生物质碳汇量研究. 林业资源管理. 2022(05): 42-52 .
    58. 郭学媛,朱建华,刘华妍,田惠玲,李春蕾,刘常富,肖文发. 林业活动对区域森林生物量碳源汇格局的影响——以南平市为例. 生态学报. 2022(23): 9548-9559 .
    59. 侯瑞萍,夏朝宗,陈健,郑芊卉,李海奎,黄金金,黄翔,邓继峰,韩旭,安天宇,郝月兰,苟丽晖. 长江经济带林地和其他生物质碳储量及碳汇量研究. 生态学报. 2022(23): 9483-9498 .
    60. 韩光荣,赵琦,邵长城. 优化施肥对樟子松幼苗生长和抗逆生理的影响. 林业调查规划. 2022(06): 49-54 .
    61. 刘丽,彭琛. 宁强县森林资源变化分析. 绿色科技. 2021(19): 97-99 .
    62. 张峰,彭祚登. 北京市森林碳储量和碳汇经济价值研究. 林业资源管理. 2021(06): 52-58 .

    Other cited types(41)

Catalog

    Article views (1304) PDF downloads (83) Cited by(103)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return