• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Xiaolin, Zhang Jun'e, He PuHuizhong, Wang Xiaolian, Tian Chengming. Histopathology study of poplar leaves infected by Colletotrichum gloeosporioides[J]. Journal of Beijing Forestry University, 2018, 40(3): 101-109. DOI: 10.13332/j.1000-1522.20170385
Citation: Zhang Xiaolin, Zhang Jun'e, He PuHuizhong, Wang Xiaolian, Tian Chengming. Histopathology study of poplar leaves infected by Colletotrichum gloeosporioides[J]. Journal of Beijing Forestry University, 2018, 40(3): 101-109. DOI: 10.13332/j.1000-1522.20170385

Histopathology study of poplar leaves infected by Colletotrichum gloeosporioides

More Information
  • Received Date: October 23, 2017
  • Revised Date: December 20, 2017
  • Published Date: February 28, 2018
  • ObjectiveThe present experiment was conducted to study the infection process of poplar leaves by Colletotrichum gloeosporioides and the inoculated leaf reaction, providing scientific basis for further research on pathologic mechanism, as well as molecular breeding for disease resistance of poplar.
    MethodThe healthy poplar leaves were inoculated with conidia suspension of C. gloeosporioides green-fluorescent-protein-marked strain BH12-2. The infection process and defense response between pathogen and poplar leaves were observed by optical and electron microscopies.
    ResultThe results showed that condium began to germinate and form germ tube at 4 hour post-inoculation (hpi). The germ tube produced appressorium after 8 hpi. The mature appressorium formed infection peg after 12 hpi. A germ tube and appressorium formed at the other top of the germinal conidium after 24 hpi. Germ tubes of abundant branches differentiated into hyphae and produced secondary conidia after 48 hpi. The infection peg formed in the base of appressorium, swelled to form an infection vesicle after penetrating the host cuticle and epidermal cell wall after 3 days post-inoculation (dpi). The infection vesicle initially grew between the host cell wall and cell membrane, without penetrating the protoplast of the host, and subsequently produced primary hyphae and secondary hyphae. The secondary hyphae rapidly expanded in the host epidermal and mesophyll tissues within 4-5 dpi, gathered in the subcuticular to form stroma tissue in 6 dpi, from which conidiophore and conidia were then developed.With mycelial extension in host tissues, a series of alterations occurred in host tissues, including callose formation around the cell wall of mesophyll cells at the penetration point, downward deformation and dissolution of cell wall, degeneration of cytoplasm, disintegration of organelles such as chloroplasts and collapse of host cells, resulting in appearance of typical brown necrotic spots on the infected leaves.
    ConclusionIn the infection process of C. gloeosporioides, conidium can germinate and form multiple germs and appressoria to increase the probability of successful infection. C. gloeosporioides adopts the intracellular hemibiotrophic infection strategy for colonization in poplar leaves.
  • [1]
    Liu F, Damm U, Cai L, et al. Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae[J]. Fungal Diversity, 2013, 61(1): 89-105. doi: 10.1007/s13225-013-0249-2
    [2]
    朱克恭.树木炭疽病[J].森林病虫通讯, 1989(2): 37-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slbctx198902022

    Zhu K G. Tree anthracnose[J]. Forest Pest and Disease, 1989(2): 37-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slbctx198902022
    [3]
    武秀红.伊犁地区杨树常见病害发生与防治[J].中国林业, 2012(13): 37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLY201213023.htm

    Wu X H. Occurrence and control of common diseases of poplar in Yili region[J].Forestry of China, 2012(13): 37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLY201213023.htm
    [4]
    韩长志.胶孢炭疽菌侵染过程相关基因研究进展[J].广东农业科学, 2014, 41(9): 165-169. doi: 10.3969/j.issn.1004-874X.2014.09.038

    Han C Z. Research advances on genes in infection process of Colletotrichum gloeosporioides[J]. Guangdong Agricultural Sciences, 2014, 41(9): 165-169. doi: 10.3969/j.issn.1004-874X.2014.09.038
    [5]
    杨茂霞, 林国彪, 陈彩虹, 等.胶孢炭疽菌侵染柱花草叶片的显微观察[J].草业学报, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021

    Yang M X, Lin G B, Chen C H, et al. Microscopic observation of Stylosanthese infected by Colletotrichum gloeosporioides[J]. Acta Prataculturae Sinica, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021
    [6]
    Fang X, Chen W, Xin Y, et al. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae[J]. Proteomics, 2012, 75(13): 4074-4090. doi: 10.1016/j.jprot.2012.05.022
    [7]
    贺伟, 沈瑞祥, 王晓军.北京地区板栗实腐病病原菌的致病性及侵染过程[J].北京林业大学学报, 2001, 23(2):36-39. doi: 10.3321/j.issn:1000-1522.2001.02.009

    He W, Shen R X, Wang X J. Pathogenicity of pathogens contributing to dry rot of Chinese chestnut and their infection process[J]. Journal of Beijing Forestry University, 2001, 23(2):36-39. doi: 10.3321/j.issn:1000-1522.2001.02.009
    [8]
    Kubo Y, Harata K, Kodama S, et al. Development of the infection strategy of the hemibiotrophic plant pathogen, Colletotrichum orbiculare, and plant immunity[J]. Physiological & Molecular Plant Pathology, 2016, 95:32-36. https://www.researchgate.net/publication/296683226_Development_of_the_infection_strategy_of_the_hemibiotrophic_plant_pathogen_Colletotrichum_orbiculare_and_plant_immunity
    [9]
    O'Connell R J, Bailey J A, Richmond D V. Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum[J]. Physiological Plant Pathology, 1985, 27(1): 75-98. doi: 10.1016/0048-4059(85)90058-X
    [10]
    O'Connell R J, Thon M R, Hacquard S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9): 1060-1065. doi: 10.1038/ng.2372
    [11]
    Curry K J, Abril M, Avant J B, et al. Strawberry anthracnose: histopathology of Colletotrichum acutatum and C. fragariae[J]. Phytopathology, 2002, 92(10): 1055-1063. doi: 10.1094-PHYTO.2002.92.10.1055/
    [12]
    Li Z, Liang Y M, Tian C M. Characterization of the causal agent of poplar anthracnose occurring in the Beijing region[J]. Mycotaxon, 2012, 120(1): 277-286. doi: 10.5248/120.277
    [13]
    Sun Y, Wang Y, Tian C. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genetics Biology, 2016, 95: 58-66. doi: 10.1016/j.fgb.2016.08.006
    [14]
    Xu X, Wang Y, Tian C, et al. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis[J]. Fungal Genetics Biology, 2016, 96: 12-24. doi: 10.1016/j.fgb.2016.09.002
    [15]
    Dipak S, Chandra J P, Singh A B. Response of fungicides and antibiotics against anthracnose of poplar caused by Colletotrichum graminicola[J]. Indian Forester, 1999, 125(6): 566-572.
    [16]
    宋丹丹, 张伊莹, 张琳婧, 等.杨树炭疽病菌对多菌灵及3种DMIs杀菌剂的敏感性[J].农药学学报, 2016, 18(5): 567-574. http://d.old.wanfangdata.com.cn/Periodical/nyxxb201605004

    Song D D, Zhang Y Y, Zhang L J, et al. Sensitivities of poplar anthracnose fungi isolates to carbendazim and three C-14α-demethylation inhibitors[J]. Chinese Journal of Pesticide Science, 2016, 18(5): 567-574. http://d.old.wanfangdata.com.cn/Periodical/nyxxb201605004
    [17]
    张敬泽, 徐同.柿树炭疽菌侵染不同柿树种、品种和部位的细胞学特征[J].菌物学报, 2005, 24(1): 116-122. http://d.old.wanfangdata.com.cn/Periodical/jwxt200501020

    Zhang J Z, Xu T. Cytological characteristics of the infection in different species varieties and organs of persimmon by Colletotrichum gloeosporioides[J]. Mycosystema, 2005, 24(1): 116-122. http://d.old.wanfangdata.com.cn/Periodical/jwxt200501020
    [18]
    姚娟妮, 张宏昌, 赵杰, 等.小麦条锈菌冬孢子发生的组织学和超微结构研究[J].菌物学报, 2012, 31(4): 560-566. http://d.old.wanfangdata.com.cn/Periodical/jwxt201204013

    Yao J N, Zhang H C, Zhao J, et al. Histological and ultrastructural observation of teliospore formation in Puccinia striiformis f. sp. tritici[J]. Mycosystema, 2012, 31(4): 560-566. http://d.old.wanfangdata.com.cn/Periodical/jwxt201204013
    [19]
    Moraes S R G, Tanaka F A O, Massola Júnior N S.Histopathology of Colletotrichum gloeosporioides on guava fruits (Psidium guajava L.)[J]. Revista Brasileira de Fruticultura, 2013, 35(2): 657-664. doi: 10.1590/S0100-29452013000200039
    [20]
    Smith J E, Korsten L, Aveling T A S. Infection process of Colletotrichum dematium on cowpea stems[J]. Mycological Research, 1999, 103(1): 230-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0f3cb2c43cb7d95333535b7bb7cdd47
    [21]
    Araujo L, Stadnik M J. Multiple appressoria and conidial anastomosis tubes in the infection process of Colletotrichum gloeosporioides on apple[J]. Bragantia, 2013, 72(2): 180-183. doi: 10.1590/S0006-87052013000200010
    [22]
    Slade S J, Harris R F, Smith C S, et al. Microcycle conidiation and spore-carrying capacity of Colletotrichum gloeosporioides on solid media[J]. Applied & Environmental Microbiology, 1987, 53(9): 2106. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_204065
    [23]
    Leandro L F, Gleason M L, Nutter F W, et al. Germination and sporulation of Colletotrichum acutatum on symptomless strawberry leaves[J]. Phytopathology, 2001, 91(7): 659-664. doi: 10.1094/PHYTO.2001.91.7.659
    [24]
    王葵娣, 王文华, 郑服丛.炭疽菌附着胞的研究进展[J].中国农学通报, 2007, 23(1): 265-270. doi: 10.3969/j.issn.1000-6850.2007.01.062

    Wang K D, Wang W H, Zheng F C. Advance research on appressorium of Colletotrichum[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 265-270. doi: 10.3969/j.issn.1000-6850.2007.01.062
    [25]
    田呈明, 梁英梅, 康振生, 等.青杨叶锈病菌(Melampsora larici-populina Kleb.)侵染过程的超微结构研究[J].植物病理学报, 2002, 32(1): 71-78. doi: 10.3321/j.issn:0412-0914.2002.01.013

    Tian C M, Liang Y M, Kang Z S, et al. Ultrastructure of poplar leaf infected by rust fungus(Melampsora larici-populina Kleb.)[J]. Acta Phytopathologica Sinica, 2002, 32(1): 71-78. doi: 10.3321/j.issn:0412-0914.2002.01.013
    [26]
    任斌, 高小宁, 韩青梅, 等.苹果炭疽叶枯病病原Glomerella cingulata及其侵染过程[J].植物保护学报, 2014, 41(5): 608-614. http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201405015

    Ren B, Gao X N, Han Q M, et al.Etiology and infection process of Glomerella cingulata causing Glomerella leaf spot of apple[J]. Journal of Plant Protection, 2014, 41(5): 608-614. http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201405015
    [27]
    Morin L, Derby J L, Kokko E G. Infection process of Colletotrichum gloeosporioides f. sp. malvae on Malvaceae weeds[J]. Mycological Research, 1996, 100(2): 165-172. doi: 10.1016/S0953-7562(96)80115-8
    [28]
    Kumar V, Gupta V, Babu A, et al. Surface ultrastructural studies on penetration and infection process of Colletotrichum gloeosporioides on mulberry leaf causing black spot disease[J]. Journal of Phytopathology, 2001, 149(11-12): 629-633. doi: 10.1046/j.1439-0434.2001.00684.x
    [29]
    杨茂霞, 林国彪, 陈彩虹, 等.胶孢炭疽菌侵染柱花草叶片的显微观察[J].草业学报, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021

    Yang M X, Lin G B, Chen C H, et al. Microscopic observation of Stylosanthese infected by Colletotrichum gloeosporioides[J]. Acta Prataculturae Sinica, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021
    [30]
    Wharton P S, Julian A M, O'Connell R J. Ultrastructure of the Infection of Sorghum bicolor by Colletotrichum sublineolum[J]. Phytopathology, 2001, 91(2): 149. doi: 10.1094/PHYTO.2001.91.2.149
    [31]
    Mims C W. Using electron microscopy to study plant pathogenic fungi[J]. Mycologia, 1991, 83(1): 1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00275514.1991.12025973
    [32]
    Latunde-Dada A O, O'Connell R J, Nash C, et al. Infection process and identity of the hemibiotrophic anthracnose fungus (Colletotrichum destructivum) from cowpea (Vigna unguiculata)[J]. Mycological Research, 1996, 100(9): 1133-1141. doi: 10.1016/S0953-7562(96)80226-7
    [33]
    Politis D J. Ultrastructure of penetration by Colletotrichum graminicola of highly resistant oat leaves[J]. Physiological Plant Pathology, 1976, 8(2): 117-120. doi: 10.1016/0048-4059(76)90044-8
    [34]
    Politis D J, Wheeler H. Ultrastructural study of penetration of maize leaves by Colletotrichum graminicola[J]. Physiological Plant Pathology, 1973, 3(4): 465-468. doi: 10.1016/0048-4059(73)90056-8
    [35]
    Landes M, Hoffmann G M.Ultrahistological investigations of the interactions in compatible and incompatible systems of Phaseolus vulgaris and Colletotrichum lindemuthianum[J]. Journal of Vibration Engineering, 1979, 96: 330-351. http://ecoport.org/ep?SearchType=reference&ReferenceID=463856
    [36]
    Dey P K. Studies in the physiology of parasitism (Ⅴ): infection by Colletotrichum lindemuthianum[J]. Annals of Botany, 1919, 33(131):305-312. https://www.researchgate.net/publication/30955830_Studies_in_the_Physiology_of_Parasitism_V_Infection_by_Colletotrichum_Lindemuthianum
    [37]
    Mould M J R, Boland G J, Robb J.Ultrastructure of the Colletotrichum trifolii-medicago sativa pathosystem (Ⅰ): pre-penetration events[J]. Physiological & Molecular Plant Pathology, 1991, 38(3): 179-194. https://www.sciencedirect.com/science/article/pii/S0885576505801237
    [38]
    Xuei X L, Jarlfors U, Kuc J. Ultrastructural changes associated with induced systemic resistance of cucumber to disease: host response and development of Colletotrichum lagenarium in systemically protected leaves[J]. Canadian Journal of Botany, 2011, 66(6): 1028-1038. doi: 10.1139/b88-148#.XQoJ0PmfDwA
    [39]
    史娟, 韩青梅, 张宏昌, 等.苜蓿假盘菌侵染苜蓿叶片的细胞学研究[J].菌物学报, 2008, 27(2): 183-192. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802004

    Shi J, Han Q M, Zhang H C, et al. Cytological observations of infection on alfalfa leaves of Pseudopeziza medicaginis[J]. Mycosystema, 2008, 27(2): 183-192. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802004
    [40]
    甘露, 苏浩天, 凌欣闻, 等.草地早熟禾及其矮化突变材料锈病病原菌鉴定及抗病机制初探[J].北京林业大学学报, 2017, 39(3):87-92. doi: 10.13332/j.1000-1522.20160315

    Gan L, Su H T, Ling X W, et al. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant[J]. Journal of Beijing Forestry University, 2017, 39(3):87-92. doi: 10.13332/j.1000-1522.20160315
    [41]
    曹庆杰, 迟德富, 宇佳, 等.布氏白僵菌侵染杨干象幼虫体壁的扫描电镜及透射电镜观察[J].北京林业大学学报, 2015, 37(5):96-101. doi: 10.13332/j.1000-1522.20140483

    Cao Q J, Chi D F, Yu J, et al. SEM and TEM observations of Beauveria brongniartii (Sacc.) Petch infecting body wall of Cryptorhynchus lapathi L.(Coleoptera: Curculionidae) larvae[J]. Journal of Beijing Forestry University, 2015, 37(5):96-101. doi: 10.13332/j.1000-1522.20140483
  • Related Articles

    [1]Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374
    [2]Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148
    [3]Sun Zhilin, Liu Bing, Li Xiaowei, Tian Yuzhen, Zhang Qing, Cao Qingqin. Functional research of transcription factor CmHAT1 regulating the development of somatic embryo in Castanea mollissima[J]. Journal of Beijing Forestry University, 2024, 46(5): 73-81. DOI: 10.12171/j.1000-1522.20230215
    [4]Li Yapeng, Sun Yuhan, Lin Huazhong, Fang Luming, Yu Xiaolong, Weng Jianyu, Zhang Yungen, Li Yun. Correlations between microsporogenesis and male cone development of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(1): 51-58. DOI: 10.12171/j.1000-1522.20210251
    [5]Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040
    [6]ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411
    [7]LI Zhe-xin, NIU Shi-hui, GAO Qiong, LI Wei.. Cytological study of gibberellin regulated xylem development.[J]. Journal of Beijing Forestry University, 2014, 36(2): 68-73.
    [8]MA Yu-lei, TANG Xing-lin, LI Xiao-yuan, PAN Hui-tang, ZHANG Qi-xiang.. Effects of photoperiod and temperature on growth and development of Primula maximowiczii.[J]. Journal of Beijing Forestry University, 2013, 35(5): 97-103.
    [9]LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24.
    [10]BAO Ren-yan, JIANG Chun-ning, ZHENG Cai-xia, DING Kun-shan. Molecular mechanism of the regulation of female gametophyte development in plants[J]. Journal of Beijing Forestry University, 2005, 27(4): 90-96.
  • Cited by

    Periodical cited type(7)

    1. 翁慧莹,刘益鹏,杨黔越,叶兴状,毕远洋,张国防,陈世品,刘宝. 福建柏地理分布及随气候变化的分布格局模拟. 生态学报. 2025(01): 137-146 .
    2. 罗楚滢,佘济云,唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测. 南京林业大学学报(自然科学版). 2024(01): 161-168 .
    3. 童丽丽,程瑶,许晓岗,王洪超,田露,蒋孝禹. 未来气候变化下白花龙在我国的潜在适生区预测. 浙江林业科技. 2024(05): 1-8 .
    4. 肖模佳,徐放,张炳建,曾梓锋. 国有林场珍贵树种发展策略浅析. 农业与技术. 2023(01): 42-44 .
    5. 张华峰. 珍稀濒危物种金斑喙凤蝶在我国潜在适生区预测. 井冈山大学学报(自然科学版). 2023(03): 56-62 .
    6. 何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 . 本站查看
    7. 刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 . 本站查看

    Other cited types(3)

Catalog

    Article views (3227) PDF downloads (143) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return