• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Tao, Dong Lihu, Li Fengri. Individual tree mortality model for hybrid larch young plantations based on mixed effects[J]. Journal of Beijing Forestry University, 2018, 40(10): 1-10. DOI: 10.13332/j.1000-1522.20170437
Citation: Wang Tao, Dong Lihu, Li Fengri. Individual tree mortality model for hybrid larch young plantations based on mixed effects[J]. Journal of Beijing Forestry University, 2018, 40(10): 1-10. DOI: 10.13332/j.1000-1522.20170437

Individual tree mortality model for hybrid larch young plantations based on mixed effects

More Information
  • Received Date: December 05, 2017
  • Revised Date: July 22, 2018
  • Published Date: September 30, 2018
  • ObjectiveTo study the individual tree mortality of hybrid larch young plantations, using fixed intervals re-measured data and different methods to establish hybrid larch (Larix kaempferi × Larix olgensis) individual tree mortality model, this paper aims to provide the basis for the determination of sustainable management and promotion of hybrid larch.
    MethodBased on the re-measured data of the 48 permanent sample plots from 2003 to 2015 in Jiangshanjiao Experimental Forest Farm in Heilongjiang Province of northeastern China, the Logistic model was used to predict the probability of individual tree mortality by the method of all sub-set and maximum likelihood estimation. Contingency table analysis, scatter plot of classification rate and threshold were used to determine the best threshold when the model estimated. Adding random parameter at plot level aims to make the mixed model with maximum likelihood estimation based on adaptive quadrature. Selected criteria of models were Akaike information criterion (AIC), Bayesian information criterion (BIC) and negative double of logarithmic likelihood ratio. The model test criteria was the absolute average deviation (Bias). The ROC curve and histogram was used for prediction of mortality rate of the models and actual mortality rate was drawn to examine the performance of model.
    ResultThe results showed that the best fitting result appeared when the model contained the combination of individual level (DBH, DBH2), stand level (stand basal area, BA) and competition level (deformation of basal area of the trees greater than the subject tree, BALD). The mortality of the hybrid larch occurred when the DBH class was small, and competition was more intensive. The probability of individual mortality decreased with the increase of DBH, and increased with the increase of BALD and BA.The optimal threshold improved the prediction effect of the model. When the unstructured matrix was the variance-covariance structure, four random parameters of the mixed model had the best fitting result. The prediction of mortality rate of mixed model was closer to the actual mortality rate.
    ConclusionMixed model is more effective to describe individual tree mortality for hybrid larch. Threshold analysis is an effective method to improve the prediction accuracy of the dichotomous model. Hybrid larch is fast-growing species and thinning treatment should be appropriately implemented to reduce the probability of tree mortality in young forests.
  • [1]
    Lee Y. Predicting mortality for even-aged stands of lodgepole pine[J]. Forestry Chronicle, 1971, 47(1): 29-32. doi: 10.5558/tfc47029-1
    [2]
    Monserud R A. Simulation of forest tree mortality[J]. Forest Science, 1976, 22(4): 438-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27cd8e1c01b09035a0e01da9c977b662
    [3]
    Dobbertin M, Biging G S. Using the non-parametric classifier CART to model forest tree mortality[J]. Forest Science, 1998, 44(4): 507-516. http://cn.bing.com/academic/profile?id=ef7fa14c88e4a482568ef57ea1be12d4&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Lutz J A, Halpern C B.Tree mortality during early forest development: a long-term study of rates, causes, and consequences[J]. Ecological Monographs, 2006, 76(2): 257-275. doi: 10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2
    [5]
    Yang Y, Titus S J, Huang S. Modeling individual tree mortality for white spruce in Alberta[J]. Ecological Modelling, 2003, 163(3): 209-222. doi: 10.1016/S0304-3800(03)00008-5
    [6]
    Monserud R A, Sterba H. Modeling individual tree mortality for Austrian forest species[J]. Forest Ecology & Management, 1999, 113(2-3): 109-123. doi: 10.1016-S0378-1127(98)00419-8/
    [7]
    杜纪山.落叶松林木枯损模型[J].林业科学, 1999, 35(2): 45-49. doi: 10.3321/j.issn:1001-7488.1999.02.008

    Du J S. Tree mortality model of Larix[J]. Scientia Silvae Sinicae, 1999, 35(2): 45-49. doi: 10.3321/j.issn:1001-7488.1999.02.008
    [8]
    Weiskittel A R, Hann D W, Kershaw J A J, et al. Forest growth and yield modeling[J]. Forest Growth & Yield Modeling, 2002, 7(2): 223-233. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232426386/
    [9]
    Das A J. Quantifying tree mortality risk and spatial pattern in a temperate conifer forest[D]. Reston: Dissertations & Theses-Gradworks, 2007.
    [10]
    Yao X H, Titus S J, Macdonald S E. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests[J]. Canadian Journal of Forest Research, 2001, 31(2): 283-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9fe599164cdf0846f343e8293ace69d1
    [11]
    Eid T, Tuhus E. Models for individual tree mortality in Norway[J]. Forest Ecology & Management, 2001, 154(1-2): 69-84. http://cn.bing.com/academic/profile?id=571ec877488116f8bfa6b0d0333f35af&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    Temesgen H, Mitchell S J. An individual-tree mortality model for complex stands of southeastern British Columbia[J]. Western Journal of Applied Forestry, 2005, 20(2): 101-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d393e9e477757794c57b3388500f6856
    [13]
    Adame P, Río M D, Cañellas I. Modeling individual-tree mortality in Pyrenean oak (Quercus pyrenaica Willd.) stands[J]. Annals of Forest Science, 2010, 67(8): 810. doi: 10.1051/forest/2010046
    [14]
    Holzwarth F, Kahl A, Bauhus J, et al. Many ways to die-partitioning tree mortality dynamics in a near-natural mixed deciduous forest[J]. Journal of Ecology, 2013, 101(1): 220-230. doi: 10.1111/jec.2012.101.issue-1
    [15]
    向玮, 雷相东, 刘刚, 等.近天然落叶松云冷杉林单木枯损模型研究[J].北京林业大学学报, 2008, 30(6): 90-98. doi: 10.3321/j.issn:1000-1522.2008.06.014

    Xiang W, Lei X D, Liu G, et al. Individual tree mortality models for semi-natural larch-spruce-fir forests in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2008, 30(6): 90-98. doi: 10.3321/j.issn:1000-1522.2008.06.014
    [16]
    Hamilton D A. Extending the range of applicability of an individual tree mortality model[J]. Canadian Journal of Forest Research, 1990, 20(8): 1212-1218. doi: 10.1139/x90-160
    [17]
    Misir M, Misir N, Yavuz H. Modeling individual tree mortality for crimean pine plantations[J]. Journal of Environmental Biology, 2007, 28(2): 167-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001523294
    [18]
    Hamilton D A, Edwards B M. Modeling the probability of individual tree mortality[Stand development][D]. Ogden: Usda Forest Service Research Paper Int, 1976.
    [19]
    王济川, 郭志刚.Logistic回归模型:方法与应用[M].北京:高等教育出版社, 2001.

    Wang J C, Guo Z G. Logistic regression models: methods and application[M]. Beijing:Higher Education Press, 2001.
    [20]
    King S L, Bennett K P, List S. Modeling noncatastrophic individual tree mortality using logistic regression, neural networks, and support vector methods[J]. Computers & Electronics in Agriculture, 2000, 27(1-3): 401-406. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212219198/
    [21]
    Ma Z H, Peng C, Li W Z, et al. Modeling individual tree mortality rates using marginal and margianl and random effects regression modes[J]. Natural Resource Modeling, 2013, 26(2): 131-153. doi: 10.1111/j.1939-7445.2012.00124.x
    [22]
    Schabenberger O, Pierce F J.Contemporary statistical models for the plant and soil science[M]. Boca Raton: CRC Press, 2001.
    [23]
    Mailly D, Gaudreault M, Picher G, et al. A comparison of mortality rates between top height trees and average site trees[J]. Annals of Forest Science, 2009, 66(2): 202. doi: 10.1051/forest/2008084
    [24]
    姜立春, 李凤日.混合效应模型在林业建模中的应用[M].北京:科学出版社, 2014.

    Jiang L C, Li F R. Application of mixed effects models in forestry modeling[M]. Beijing:Science Press, 2014.
    [25]
    Groom J D, Hann D W, Temesgen H. Evaluation of mixed-effects models for predicting Douglas-fir mortality[J]. Forest Ecology & Management, 2012, 276(4): 139-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f010da15b139343e4aa55271e527d2f
    [26]
    Timilsina N, Staudhammer C L. Individual tree mortality model for slash pine in Florida: a mixed modeling approach[J]. Southern Journal of Applied Forestry, 2012, 36(4): 211-219. doi: 10.5849/sjaf.11-026
    [27]
    王涛, 董利虎, 李凤日.杂种落叶松人工幼龄林林分枯损规律及枯损模型[J].东北林业大学学报, 2017, 45(5): 39-43. doi: 10.3969/j.issn.1000-5382.2017.05.008

    Wang T, Dong L H, Li F R. Mortality of stand trees for hybrid larch young plantation in Heilongjiang[J]. Journal of Northeast Forestry University, 2017, 45(5): 39-43. doi: 10.3969/j.issn.1000-5382.2017.05.008
    [28]
    Hein S, Weiskittel A R. Cutpoint analysis for models with binary outcomes: a case study on branch mortality[J]. European Journal of Forest Research, 2010, 129(4): 585-590. doi: 10.1007/s10342-010-0358-3
    [29]
    祖笑锋, 倪成才, Gorden Nigh, 等.基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程[J].林业科学, 2015, 51(3): 25-33. http://d.old.wanfangdata.com.cn/Periodical/lykx201503004

    Zu X F, Ni C C, Gorden N, et al. Based on mixed-effects model and empirical best linear unbiased predictor to predict growth profile of dominant height[J]. Scientia Silvae Sinicae, 2015, 51(3): 25-33. http://d.old.wanfangdata.com.cn/Periodical/lykx201503004
    [30]
    Müller J, Hothorn T. Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests[J]. European Journal of Forest Research, 2004, 123(3): 219-228. doi: 10.1007/s10342-004-0035-5
    [31]
    Hosmer D W, Lemeshow S. Applied logistic regression[M]. New York:John Wiley & Sons, 2000.
    [32]
    Bravooviedo A, Sterba H, Mdel R, et al. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L.[J]. Forest Ecology & Management, 2006, 222(1): 88-98. https://www.sciencedirect.com/science/article/pii/S0378112705006079
    [33]
    Chen H, Fu S, Roberta M, et al. Relative size and stand age determine Pinus banksiana mortality[J]. Forest Ecology & Management, 2008, 255(12): 3980-3984. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210058055/
    [34]
    Crecente-campo F, Marshall P, Rodríguezsoalleiro R. Modeling non-catastrophic individual-tree mortality for Pinus radiata plantations in northwestern Spain[J]. Forest Ecology & Management, 2009, 257(6): 1542-1550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52aa55cb3afb30a45744cd02c3cf07a6
    [35]
    Bolker B M, Brooks M E, Clark C J, et al. Generalized linear mixed models: a practical guide for ecology and evolution[J]. Trends in Ecology & Evolution, 2009, 24(3): 127-135. http://cn.bing.com/academic/profile?id=e34c66cac76c514a9d459aa122d42bcd&encoded=0&v=paper_preview&mkt=zh-cn
    [36]
    张含国, 张成林, 兰士波, 等.落叶松杂种优势分析及家系选择[J].南京林业大学学报(自然科学版), 2005, 29(3): 69-72. doi: 10.3969/j.issn.1000-2006.2005.03.017

    Zhang H G, Zhang C L, Lan S B, et al. The analysis and selection for families of hybrid larch[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2005, 29(3): 69-72. doi: 10.3969/j.issn.1000-2006.2005.03.017
    [37]
    杨书文, 鞠永贵, 张世英, 等.落叶松杂种优势的研究[J].东北林业大学学报, 1985, 13(1): 30-36. http://d.old.wanfangdata.com.cn/Periodical/lykj201306004

    Yang S W, Jin Y G, Zhang S Y, et al. Research on larch hybrid vigor[J]. Journal of Northeast Forestry University, 1985, 13(1): 30-36. http://d.old.wanfangdata.com.cn/Periodical/lykj201306004
  • Cited by

    Periodical cited type(19)

    1. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    2. 田刘翔宇,张立世,姚纪元,王利民. 基于MaxEnt探究栖息地质量对百灵科鸟类分布影响. 东北师大学报(自然科学版). 2024(02): 106-116 .
    3. 章蜜,罗伟. 庐山保护区白颈长尾雉生境适宜性评价研究. 湖北林业科技. 2024(05): 44-48 .
    4. 王佩,李英杰,袁家根,耿盼,李蕊. 基于优化MaxEnt模型的原麝生境适宜性评价. 野生动物学报. 2023(01): 38-45 .
    5. 富爱华,郜二虎,布日古德,陈敏豪,提杨,栾晓峰. 我国白琵鹭(Platalea leucorodia)越冬地预测与保护现状分析. 生态与农村环境学报. 2022(01): 69-75 .
    6. 吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望. 高师理科学刊. 2022(05): 66-70 .
    7. 李鑫泽,冯佳楠,支晓亮,钟林强,刘鑫鑫,张明海. 东北地区三种鹿科动物潜在栖息地预测与保护空缺分析. 野生动物学报. 2021(02): 318-328 .
    8. 王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 . 本站查看
    9. 张丽霞,孙冬婷,胡昕,朱向博,张敬,晁青鲜,卫泽珍,张成林. 中国圈养褐马鸡种群和饲养管理现状调查. 野生动物学报. 2021(04): 1123-1130 .
    10. 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学. 2021(10): 102-110 .
    11. 刘博,王晔楠,唐超,刘丽,马光昌,彭正强,阎伟. 云斑斜线天蛾在我国的适生性及限制性环境因子分析. 热带作物学报. 2021(12): 3581-3587 .
    12. 李敏,李秀明,徐家慧,薛琳,武爱明,盘凯筠,闵晓明,李玉太,钱法文. 基于MaxEnt模型预测白琵鹭在中国东北地区的适宜分布区. 生态学杂志. 2020(08): 2691-2703 .
    13. 张丽霞,王志永. 褐马鸡栖息地保护研究. 特种经济动植物. 2020(12): 3-5 .
    14. 唐书培,穆丽光,王晓玲,张静,刘波,孟和达来,鲍伟东. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价. 北京林业大学学报. 2019(01): 102-108 . 本站查看
    15. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    16. 白雪红,王文杰,蒋卫国,师华定,陈坤,陈民. 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究. 2019(06): 1001-1011 .
    17. 刘博,覃伟权,阎伟. 基于MaxEnt模型的小巢粉虱在中国的潜在地理分布. 环境昆虫学报. 2019(06): 1276-1286 .
    18. 王浩,杨德宏,满亚洲. 基于GIS技术的动物物种管理及保护. 软件. 2018(12): 111-115 .
    19. 侯海英. 山西褐马鸡种群分布及特性研究. 山西林业科技. 2018(04): 11-13+72 .

    Other cited types(17)

Catalog

    Article views (2275) PDF downloads (54) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return