• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ma Jingyi, Huang Huaguo, Huang Kan, Xing Lu. Individual tree detection and stand basal area estimation based on 16 linear array TLS data[J]. Journal of Beijing Forestry University, 2018, 40(8): 23-32. DOI: 10.13332/j.1000-1522.20180016
Citation: Ma Jingyi, Huang Huaguo, Huang Kan, Xing Lu. Individual tree detection and stand basal area estimation based on 16 linear array TLS data[J]. Journal of Beijing Forestry University, 2018, 40(8): 23-32. DOI: 10.13332/j.1000-1522.20180016

Individual tree detection and stand basal area estimation based on 16 linear array TLS data

More Information
  • Received Date: January 09, 2018
  • Revised Date: July 09, 2018
  • Published Date: July 31, 2018
  • ObjectiveTerrestrial laser scanning (TLS) can be used for fast and non-destructive 3D measurement of forest canopy with less manpower, material resources and time consumption than traditional methods, and it has been widely used in forestry inventory. Most current studies use 360 degrees of scanning to conduct parameter extraction, which requires relatively long time to scan forest trees and process the big data. Fewer study has been found on the faster multi-linear array scanning; and corresponding algorithms on processing the sparse point cloud data have not yet developed. As a first trial, the application capability of multi-linear array TLS on forest parameter extraction needs to be verified.
    MethodA new stem detection algorithm was proposed based on the 16 linear array TLS data from a single-station scanning. The key to the algorithm is using the distance difference to the scanning station to differ tree stems from other objects around them. The random sample consensus (RANSAC) algorithm for circle was used to fit the stem point cloud at breast height and extract DBH. After detection of all stems, the angle gauge method was introduced to estimate the basal area of the forest. A case study was performed in two places: the Dongsheng Country Park and the Olympic Forest Park in Beijing.
    ResultThe detection rate of individual trees was above 80% if averaging multiple single-scanning TLS data; the detection rate in the sparse plot was about 95%; the detection rate decreased with the increasing distance from the scanning station, where 10 m was the maximum to achieve a relatively high detection rate. The determination coefficient of estimated DBH of individual trees calculated by the regression equation ranged in 0.72-0.82. The accuracy of stand average DBH was higher than 90%, which was good at the plot level. The forest plot basal area was estimated based on the DBH extracted from TLS using the angle gauge method. Compared with the field measurement, the relative accuracy of basal area was about 90%.
    Conclusion This method can accurately acquire single tree DBH and stand average DBH as well as basal area based on the 16 linear array TLS data with high efficiency, which provides a new choice for forestry survey.
  • [1]
    李丹, 庞勇, 岳彩荣.地基激光雷达在森林参数反演中的应用[J].世界林业研究, 2012, 25(6): 34-39. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201206006

    Li D, Pang Y, Yue C R. A review of TLS application in forest parameters retrieving[J]. World Forestry Research, 2012, 25(6): 34-39. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201206006
    [2]
    黄华国.激光雷达技术在林业科学研究中的进展分析[J].北京林业大学学报, 2013, 35(4): 134-143. http://j.bjfu.edu.cn/article/id/9915

    Huang H G. Progress analysis of LiDAR research on forestry science studies[J]. Journal of Beijing Forestry University, 2013, 35 (4): 134-143. http://j.bjfu.edu.cn/article/id/9915
    [3]
    刘鲁霞.机载和地基激光雷达森林垂直结构参数提取研究[D].北京: 中国林业科学研究院, 2014. http://cdmd.cnki.com.cn/Article/CDMD-82201-1014331860.htm

    Liu L X. Retrieving vertical structural parameters of forest using terrestrial and airborne laser scanning data[D]. Beijing: Chinese Academy of Forestry, 2014. http://cdmd.cnki.com.cn/Article/CDMD-82201-1014331860.htm
    [4]
    Koreň M, Mokroš M, Bucha T. Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 63:122-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2691093fee2127c114b11082818a8118
    [5]
    Wang D, Hollaus M, Puttonen E, et al. Automatic and self-adaptive stem reconstruction in landslide-affected forests[J]. Remote Sensing, 2016, 8(12): 974-996. doi: 10.3390/rs8120974
    [6]
    Yang B, Dai W, Dong Z, et al. Automatic forest mapping at individual tree levels from terrestrial laser scanning point clouds with a hierarchical minimum cut method[J]. Remote Sensing, 2016, 8(5): 372-389. doi: 10.3390/rs8050372
    [7]
    Pueschel P, Newnham G, Rock G, et al. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77(3): 44-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=932c1f2b449e65ea01fb286bbfa450c4
    [8]
    李丹, 庞勇, 岳彩荣, 等.基于TLS数据的单木胸径和树高提取研究[J].北京林业大学学报, 2012, 34(4): 79-86. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201204015

    Li D, Pang Y, Yue C R, et al. Extraction of individual tree DBH and height based on terrestrial laser scanner data[J]. Journal of Beijing Forestry University, 2012, 34(4): 79-86. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201204015
    [9]
    刘鲁霞, 庞勇, 李增元.基于地基激光雷达的亚热带森林单木胸径与树高提取[J].林业科学, 2016, 52(2): 26-37. http://d.old.wanfangdata.com.cn/Periodical/lykx201602004

    Liu L X, Pang Y, Li Z Y. Individual tree DBH and height estimation using terrestrial laser scanning (TLS) in a subtropical forest[J]. Scientia Silvae Sinicae, 2016, 52(2): 26-37. http://d.old.wanfangdata.com.cn/Periodical/lykx201602004
    [10]
    Olofsson K, Holmgren J, Olsson H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm[J]. Remote Sensing, 2014, 6(5): 4323-4344. doi: 10.3390/rs6054323
    [11]
    刘鲁霞, 庞勇, 李增元, 等.用地基激光雷达提取单木结构参数:以白皮松为例[J].遥感学报, 2014, 18(2): 371-377. http://d.old.wanfangdata.com.cn/Periodical/gjstx98201002015

    Liu L X, Pang Y, Li Z Y, et al. Retrieving structural parameters of individual tree through terrestrial laser scanning data[J]. Journal of Remote Sensing, 2014, 18(2): 371-377. http://d.old.wanfangdata.com.cn/Periodical/gjstx98201002015
    [12]
    尚任, 习晓环, 王成, 等.利用地面激光扫描数据提取单木结构参数[J].测绘科学, 2015, 40(9): 78-81. http://d.old.wanfangdata.com.cn/Periodical/chkx201509016

    Shang R, Xi X H, Wang C, et al. Retrieval of individual tree parameters using terrestrial laser scanning data[J]. Science of Surveying and Mapping, 2015, 40(9): 78-81. http://d.old.wanfangdata.com.cn/Periodical/chkx201509016
    [13]
    Bienert A, Scheller S, Keane E, et al. Application of terrestrial laser scanners for the determination of forest inventory parameters[J/OL]. [2017-08-01]. http://www.isprs.org/proceedings/XXXVI/part5/paper/1270_Dresden06.pdf.
    [14]
    步国超, 汪沛.基于单站地面激光雷达数据的自适应胸径估计方法[J].激光与光电子学进展, 2016(8): 278-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201608038

    Bu G C, Wang P. Adaptive estimation method for diameter at breast height based on terrestrial laser scanning[J]. Laser & Optoelectronics Progress, 2016(8): 278-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201608038
    [15]
    Maas H G, Bienert A, Scheller S, et al. Automatic forest inventory parameter determination from terrestrial laser scanner data[J]. International Journal of Remote Sensing, 2008, 29(5): 1579-1593. doi: 10.1080/01431160701736406
    [16]
    Kiraly G, Brolly Y G. Tree height estimation methods for terrestrial laser scanning in a forest reserve[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007, 36: 211-215. http://cn.bing.com/academic/profile?id=b14b776db2290b9cffacd40e1684abf3&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Xia S, Wang C, Pan F, et al. Detecting stems in dense and homogeneous forest using single-scan TLS[J]. Forests, 2015, 6: 3923-3945. doi: 10.3390/f6113923
    [18]
    Rutzinger M, Pratihast A K, Elberink S O, et al. Detection and modelling of 3D trees from mobile laser scanning data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010, 38: 520-525. http://cn.bing.com/academic/profile?id=2772bdd5334282c31da3cc77c07e218e&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    Liang X, Litkey P, Hyyppä J, et al. Automatic stem mapping using single-scan terrestrial laser scanning[J]. IEEE Transactions on Geoscience of Remote Sensing, 2012, 50:661-670. doi: 10.1109/TGRS.2011.2161613
    [20]
    Vonderach C, Voegtle T, Adler P. Voxel-based approach for estimating urban tree volume from terrestrial laser scanning data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 39: 451-456. http://cn.bing.com/academic/profile?id=ac7cc4bd3785fcd384a068a94ac9eac2&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    黄武陵.激光雷达在无人驾驶环境感知中的应用[J].单片机与嵌入式系统应用, 2016, 16(10):3-7. http://d.old.wanfangdata.com.cn/Periodical/dpjyqrsxtyy201610002

    Huang W L. Application of Lidar in perception of autonomous driving environment[J]. Microcontrollers & Embedded Systems, 2016, 16 (10):3-7. http://d.old.wanfangdata.com.cn/Periodical/dpjyqrsxtyy201610002
    [22]
    于金霞, 蔡自兴, 邹小兵, 等.基于激光雷达的移动机器人障碍测距研究[J].传感器与微系统, 2006, 25(5):31-33. doi: 10.3969/j.issn.1000-9787.2006.05.010

    Yu J X, Cai Z X, Zou X B, et al. Study on obstacles detection of mobile robot based on laser scanner[J]. Transducer and Microsystem Technologies, 2006, 25(5):31-33. doi: 10.3969/j.issn.1000-9787.2006.05.010
    [23]
    Pierzchała M, Giguère P, Astrup R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM[J]. Computers & Electronics in Agriculture, 2018, 145:217-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a01b851ad6210844d1b1597674a465c6
    [24]
    Liang X, Kankare V, Hyyppä J, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:63-77. doi: 10.1016/j.isprsjprs.2016.01.006
    [25]
    Huang H, Li Z, Gong P, et al. Automated methods for measuring DBH and tree heights with a commercial scanning Lidar[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(3):219-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4065c284751b824eb09cf6718e8f7237
    [26]
    Zhang W, Chen Y, Wang H, et al. Efficient registration of terrestrial LiDAR scans using a coarse-to-fine strategy for forestry applications[J]. Agricultural and Forest Meteorology, 2016, 225:8-23. doi: 10.1016/j.agrformet.2016.05.005
    [27]
    Liang X, Hyyppä J. Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels[J]. Sensors, 2013, 13(2):1614-1634. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ce162da7876f0b25edeb7c034e1ebbd5
    [28]
    Roesch F A, Deusen P C V. Anomalous diameter distribution shifts estimated from FIA inventories through time[J]. Forestry, 2010, 83(83):269-276. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0217088495/
    [29]
    惠刚盈, von Gadow K.结构化森林经营原理[M].北京:中国林业出版社, 2016.

    Hui G Y, von Gadow K. Principles of structure-based forest management[M]. Beijing: China Forestry Publishing House, 2016.
    [30]
    Zhang W, Qi J, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501-522. doi: 10.3390/rs8060501
    [31]
    孟宪宇.测树学[M].北京:中国林业出版社, 2006.

    Meng X Y. Forest measurements[M]. Beijing: China Forestry Publishing House, 2006.
  • Cited by

    Periodical cited type(2)

    1. 柳璎珊,应玥,彭嫔嫔,骆剑锋,李志红,张威,舒金平. 不同寄主源栎实象共生细菌多样性. 生态学杂志. 2025(02): 460-470 .
    2. 赵秋玲,张晶,王大伟,陈奕蓉. 不同种群锐齿槲栎种子形态特征与营养成分变异分析. 西部林业科学. 2024(05): 8-15 .

    Other cited types(0)

Catalog

    Article views (1915) PDF downloads (62) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return