• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Sun Heng, Ji Xiaodong, Zhao Honghua, Yang Maolin, Cong Xu. Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests[J]. Journal of Beijing Forestry University, 2018, 40(7): 104-112. DOI: 10.13332/j.1000-1522.20180030
Citation: Sun Heng, Ji Xiaodong, Zhao Honghua, Yang Maolin, Cong Xu. Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests[J]. Journal of Beijing Forestry University, 2018, 40(7): 104-112. DOI: 10.13332/j.1000-1522.20180030

Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests

More Information
  • Received Date: January 18, 2018
  • Revised Date: April 03, 2018
  • Published Date: June 30, 2018
  • ObjectiveRobinia pseudoacacia, as an important fast-growing timber tree species in China, is widely used in plantation in northern China. In order to provide a scientific basis for the construction and management of Robinia pseudoacacia plantation and efficient and meticulous utilization of wood, it is very necessary to further study the physical and mechanical properties of Robinia pseudoacacia wood.
    MethodIn this paper, 4 different tree-age plantations of Robinia pseudoacacia collected from the coastal forest farm of Dongying, Shandong Province of eastern China were divided into 0.65 m long segments along the tree trunk and numbered in sequence. The physical properties (air-dry density, absolute-dry density and basic density) and mechanical properties (compressive strength parallel to grain, radial compression entire strength perpendicular to grain, the tangential compression entire strength perpendicular to grain, bending strength, bending elastic modulus) and chemical components (cellulose, hemicellulose and lignin) content of wood in different ages and varied heights were measured and analyzed.The microscopic structure of each section of wood was compared and analyzed by scanning electron microscope.
    ResultThe results showed that wood air-dry density, absolute-dry density, basic density, compressive strength parallel to grain and compression (entire) strength perpendicular to grain(radial and tangential), bending strength, bending elastic modulus all increased with tree age increasing, and with the increase of trunk height position, the above variables increased first and then decreased. The wood air-dry density was fitted by linear and power functions fitting to the compressive strength, the transverse compressive strength, the bending strength and the bending modulus of elasticity. It was found that the two models can fit the experimental results well, and the fitting R2 was 0.865-0.895. The changing rules of cellulose content in chemical components of each wood segment with tree age and trunk height position were similar to those of each mechanical property of wood. In the microstructure of wood, the ratio of duct decreased with the increase of tree age, and showed a rule of decreased first and then increased with the increase of trunk height position.
    ConclusionThe results show that the air-dry density, compressive strength parallel to grain, bending strength, bending elastic modulus of 10 years old, 15 years old, 20 years old and 25 years old Robinia pseudoacacia wood were all above intermediate level and these are good furniture and building wood. The difference in varied tree age and varied trunk height position should be taken into full consideration when utilizing wood. As a direct factor influencing the mechanical properties of wood, density can be used to estimate partial mechanical properties of Robinia pseudoacacia wood according to the relevant equations. The cellulose content of Robinia pseudoacacia wood is highly correlated with the macro mechanical properties of wood, while the difference of wood duct occupation ratio reveals the intrinsic reason of wood density change from microscopic structure.
  • [1]
    田明华, 史莹赫, 黄雨, 等.中国经济发展、林产品贸易对木材消耗影响的实证分析[J].林业科学, 2016, 52(9):113-123. http://d.old.wanfangdata.com.cn/Periodical/lykx201609014

    Tian M H, Shi Y H, Huang Y, et al. An empirical analysis of effects of economic development and forest product trade on wood consumption in China[J].Scientia Silvae Sinicae, 2016, 52(9):113-123. http://d.old.wanfangdata.com.cn/Periodical/lykx201609014
    [2]
    刘世荣, 杨予静, 王晖.中国人工林经营发展战略与对策:从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J].生态学报, 2018, 38(1): 1-10. doi: 10.3969/j.issn.1673-1182.2018.01.001

    Liu S R, Yang Y J, Wang H. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 2018, 38(1): 1-10. doi: 10.3969/j.issn.1673-1182.2018.01.001
    [3]
    李坚.木材科学研究[M].北京:科学出版社, 2009:183.

    Li J.Wood science research[M]. Beijing: Science Press, 2009:183.
    [4]
    Reiterer A, Sinn G, Stanzl-Tschegg S E. Fracture characteristics of different wood species under mode Ⅰ loading perpendicular to the grain[J]. Materials Science & Engineering A, 2002, 332(1):29-36.
    [5]
    Adamopoulos S, Passialis C, Voulgaridis E. Strength properties of juvenile and mature wood in black locust (Robinia pseudoacacia) [J]. Wood & Fiber Science Journal of the Society of Wood Science & Technology, 2007, 39(2):241-249.
    [6]
    Niklas K J. Size- and age-dependent variation in the properties of sap and heartwood in black locust (Robinia pseudoacacia L.) [J]. Annals of Botany, 1997, 79(5):473-478.
    [7]
    Pollet C, Verheyen C, Hébert J, et al. Physical and mechanical properties of black locust (Robinia pseudoacacia) wood grown in Belgium[J]. Canadian Journal of Forest Research, 2012, 42(5):831-840. doi: 10.1139/x2012-037
    [8]
    陈印平, 夏江宝, 赵西梅, 等.黄河三角洲典型人工林土壤碳氮磷化学计量特征[J].土壤通报, 2017, 48(2):392-398. http://d.old.wanfangdata.com.cn/Periodical/trtb201702020

    Chen Y P, Xia J B, Zhao X M, et al. Effect of different plantation types on soil ecological stoichiometry in Yellow Delta[J]. Chinese Journal of Soil Science, 2017, 48(2):392-398. http://d.old.wanfangdata.com.cn/Periodical/trtb201702020
    [9]
    邓磊, 张文辉.黄土沟壑区刺槐人工林的天然发育规律[J].林业科学, 2010, 46(12):15-22. doi: 10.11707/j.1001-7488.20101203

    Deng L, Zhang W H. Natural development pattern of Robinia pseudoacacia plantations in loess hilly region[J]. Scientia Silvae Sinicae, 2010, 46(12):15-22. doi: 10.11707/j.1001-7488.20101203
    [10]
    任世学, 姜贵全, 屈红军.植物纤维化学实验教程[M].哈尔滨:东北林业大学出版社, 2008: 53-54.

    Ren S X, Jiang G Q, Qu H J. Plant fibre chemistry experiment[M]. Harbin: Northeast Forestry University Press, 2008: 53-54.
    [11]
    葛晓雯, 王立海, 侯捷建, 等.褐腐杨木微观结构、力学性能与化学成分的关系研究[J].北京林业大学学报, 2016, 38(10):112-122. doi: 10.13332/j.1000-1522.20160098

    Ge X W, Wang L H, Hou J J, et al. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay[J]. Journal of Beijing Forestry University, 2016, 38(10):112-122. doi: 10.13332/j.1000-1522.20160098
    [12]
    李坚.木材科学[M].北京:科学出版社, 2014:241.

    Li J. Wood science [M]. Beijing: Science Press, 2014:241.
    [13]
    梁宏温, 徐峰, 牟继平.马占相思木材物理力学性质的研究[J].广西农业生物科学, 2004, 23(4): 325-329. http://www.cnki.com.cn/Article/CJFDTOTAL-GXNB200404016.htm

    Liang H W, Xu F, Mou J P. Studies on the wood physical-mechanical properties of Acacia mangium Willd[J]. Journal of Guangxi Agricultural and Biological Science, 2004, 23(4): 325-329. http://www.cnki.com.cn/Article/CJFDTOTAL-GXNB200404016.htm
    [14]
    成俊卿.木材学[M].北京:中国林业出版社, 1985:176.

    Cheng J Q.Wood science[M]. Beijing: China Forestry Publishing House, 1985:176.
    [15]
    Newlin J A, Wilson T R. The relation of the shrinkage and strength properties of wood to its specific gravity[J]. USDA Technical Bulletin, 1919, 676:1-35.
    [16]
    Zhang S Y. Wood specific gravity-mechanical property relationship at species level[J]. Wood Science & Technology, 1997, 31:181-191. doi: 10.1007/BF00705884
    [17]
    江泽慧, 姜笑梅.木材结构与其品质特性的相关性[M].北京:科学出版社, 2008:228-230.

    Jiang Z H, Jiang X M. The correlation between wood structure and its quality characteristics[M]. Beijing: Science Press, 2008: 228-230.
    [18]
    邵卓平, 董宏敢, 张治国, 等.湿地松木材物理力学性质研究[J].安徽农业大学学报, 2000, 27(1): 64-66. doi: 10.3969/j.issn.1672-352X.2000.01.016

    Shao Z P, Dong H G, Zhang Z G, et al. Study on physical and mechanical proper ties of Pinus elliottii[J]. Journal of Anhui Agricultural University, 2000, 27(1): 64-66. doi: 10.3969/j.issn.1672-352X.2000.01.016
    [19]
    张双燕.化学成分对木材细胞壁力学性能影响的研究[D].北京: 中国林业科学研究院, 2011: 9-12.

    Zhang S Y.Chemical components effect on mechanical properties of wood cell wall [D]. Beijing: Chinese Academy of Forestry, 2011: 9-12.
    [20]
    刘成倩, 王传贵, 李媛媛, 等.枫香木材化学成分及其在高度上的变异规律[J].安徽农业大学学报, 2017, 44(6):1043-1046. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201706017.htm

    Liu C Q, Wang C G, Li Y Y, et al. The chemical components of Liquidambar formosana and their longitudinal variation[J]. Journal of Anhui Agricultural University, 2017, 44(6):1043-1046. http://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201706017.htm
    [21]
    崔贺帅, 杨淑敏, 刘杏娥, 等.杞柳的化学成分及其木质素微区分布的研究[J].林产化学与工业, 2016, 36(5):120-126. doi: 10.3969/j.issn.0253-2417.2016.05.018

    Cui H S, Yang S M, Liu X E, et al. Chemical composition and lignin distribution of Salix integra[J]. Chemistry and Industry of Forest Products, 2016, 36(5):120-126. doi: 10.3969/j.issn.0253-2417.2016.05.018
    [22]
    王传贵, 江泽慧, 费本华, 等.化学成分对木材细胞壁纵向弹性模量和硬度的影响[J].北京林业大学学报, 2012, 34(3): 107-110. http://j.bjfu.edu.cn/article/id/9765

    Wang C G, Jiang Z H, Fei B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107-110. http://j.bjfu.edu.cn/article/id/9765
    [23]
    姜笑梅, 殷亚方, 浦上弘幸.北京地区I-214杨树木材解剖特性与基本密度的株内变异及其预测模型[J].林业科学, 2003, 39(6):115-121. doi: 10.3321/j.issn:1001-7488.2003.06.019

    Jiang X M, Yin Y F, Hiroyuki U. Variation within tree of wood anatomical properties and basic density of I-214 poplar in Beijing area and their relationship modelling equations[J]. Scientia Silvae Sinicae, 2003, 39(6):115-121. doi: 10.3321/j.issn:1001-7488.2003.06.019
  • Related Articles

    [1]Li Xin, Zhong Tuhua, Chen Hong, Li Jingjing. Chemical composition and thermal stability of cells in different structures of Phyllostachys edulis[J]. Journal of Beijing Forestry University, 2023, 45(8): 156-162. DOI: 10.12171/j.1000-1522.20230104
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Yang Guochao, Wang Nan, Huang Xinxin, Geng Yaru, Liu Jing, Zhang Qiuhui. Variation of microscopic morphology and chemical composition of marigold stalk[J]. Journal of Beijing Forestry University, 2020, 42(1): 149-156. DOI: 10.12171/j.1000-1522.20190311
    [4]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [5]SONG Sha-sha, ZHAO Guang-jie. Fractal characteristics of macroscopic and microscopic cell-piled structure patterns of wood[J]. Journal of Beijing Forestry University, 2011, 33(4): 102-106.
    [6]YANG Zhong, ZHAO Rong-jun, FEI Ben-hua, JIANG Ze-hui. Correlation of wood crystallinity with chemical composition and annual ring characteristics of slash pine trees[J]. Journal of Beijing Forestry University, 2010, 32(4): 223-226.
    [7]HUANG Rong-feng, Lv Jian-xiong, CAO Yong-jian, ZHAO Xiu, ZHAO You-ke, ZHOU Yong-dong, WU Yu-zhang. Impact of heat treatment on chemical composition of Chinese white poplar wood.[J]. Journal of Beijing Forestry University, 2010, 32(3): 155-160.
    [8]NIU Min, GAO Hui, ZHAO Guang-jie 1. Fiber morphology and chemical composition of tension wood in Populus×euramericana cv. ‘Neva’[J]. Journal of Beijing Forestry University, 2010, 32(2): 141-144.
    [9]ZHOU Yong-dong, FU Feng, LI Xian-jun, JIANG Xiao-mei, CHEN Zhi-lin. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 146-150.
    [10]WANG Zheng, ZHANG Gui-lan, GAO Li, CHANG Liang. Microscopic structure and properties of foaming wood-based composites[J]. Journal of Beijing Forestry University, 2007, 29(3): 154-158. DOI: 10.13332/j.1000-1522.2007.03.025
  • Cited by

    Periodical cited type(11)

    1. 李颜平,甘克勤. 面向非煤矿山废弃地生态修复标准体系的树种生物质碳储量研究. 标准科学. 2022(03): 31-36 .
    2. 金子皓,王京学,任一凡,张晓,冀晓东. 不同林带结构的刺槐林防风效应. 北京林业大学学报. 2022(08): 39-47 . 本站查看
    3. 米强,刘朝宇,周岭,王亚梅,高倩,张红美,刘江. 新疆红枣残枝力学特性试验研究. 农机化研究. 2021(07): 194-201 .
    4. 尹业桥,侯俊峰,姜志宏,俞友明. 早材管孔分布对环孔材栎木蠕变特性的影响. 林业工程学报. 2021(03): 54-60 .
    5. 仲伟国,徐贵学,王有刚,赵一凡,李国霞,张宝贞,董元夫,荀守华. 刺槐品种原木与胶合板物理力学性能比较分析. 山东林业科技. 2021(02): 12-15 .
    6. 袁承志,张振,郑一,金国庆,丰忠平,周志春,徐刚标. 33年生马尾松木材力学性质种源变异研究. 中南林业科技大学学报. 2021(08): 68-74+107 .
    7. 曹蕊,吕黄飞,杨浩,徐斌. 无刺刺槐木材基础材性研究及其品质评定. 林业科技通讯. 2021(10): 25-28 .
    8. 赵林峰,邱向英. 不同林龄杉木实生林物理力学性质变异研究. 安徽农业大学学报. 2021(05): 726-732 .
    9. 张晓文,于青君,张卫强,赵连清,张龙玉,罗桂生,贾茜,贾忠奎. 不同树龄油松建筑材林木材性质及生长过程研究. 中南林业科技大学学报. 2020(06): 122-131 .
    10. 毕玉金,王慧,潘彪,黄利斌. 引种美国红橡幼龄材的物理力学性质研究. 西北农林科技大学学报(自然科学版). 2020(09): 37-43 .
    11. 沈浩,吴玉乐,杨冉,关莹,刘盛全,高慧. 4种无性系速生材杉木的材性比较研究. 安徽农业大学学报. 2020(05): 713-721 .

    Other cited types(9)

Catalog

    Article views (1892) PDF downloads (85) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return