• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Peng, Cui Yingchun, Zhao Wenjun, Shu Deyuan, Hou Yiju, Ding Fangjun, Yang Wenbin. Characteristics of soil stoichiometric in natural restoration process of Maolan karst forest vegetation, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 80-92. DOI: 10.13332/j.1000-1522.20180136
Citation: Wu Peng, Cui Yingchun, Zhao Wenjun, Shu Deyuan, Hou Yiju, Ding Fangjun, Yang Wenbin. Characteristics of soil stoichiometric in natural restoration process of Maolan karst forest vegetation, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 80-92. DOI: 10.13332/j.1000-1522.20180136

Characteristics of soil stoichiometric in natural restoration process of Maolan karst forest vegetation, southwestern China

More Information
  • Received Date: April 18, 2018
  • Revised Date: June 04, 2018
  • Available Online: February 28, 2019
  • Published Date: February 28, 2019
  • ObjectiveThe dynamics of soil nutrition and stoichiometric characteristics of different successional stages during the process of natural restoration in Maolan karst forest vegetation of southwestern China were studied to explore the relationship between them, and quantitatively evaluate the degree of explanation of impact factors on soil stoichiometric characteristics, and clarify the intrinsic coupling relationship between the vegetation community succession and soil property evolution, in order to provide the theoretical basis for restoration and reconstruction of degraded karst forest.
    MethodTaking he herb stage, shrub stage, arbor stage and climax stage as the research objects, three fixed sample plots were set up in each succession stage, 12 soil profiles were randomly set up according to different niche conditions and laminated sampling. The contents of SOC, TN, TP and TK were measured and the stoichiometric ratio was calculated.
    ResultThe mean contents of SOC, TN, TP and TK of soil in the research region were 54.72, 4.67, 0.73 and 8.53 g/kg, respectively. There were significantly or very significantly positive correlations between the contents of SOC, TP and TN, showing relatively consistent law of change. The ratios of C:N, C:P, C:K, N:P, N:K and P:K were 11.95, 79.16, 6.50, 6.64, 0.550 1 and 0.085 2, respectively. In terms of coefficient of variation, except TK content and C:N belonged to weak variability, the soil nutrient content and stoichiometric ratio were all medium variability. With the forward succession of vegetation, the SOC, TN and TP contents in different succession stages basically increased, but the change trend of TK content was reverse V-shape, showed arbor stage > climax stage > shrub stage > herb stage. The contents of SOC, TN and TP of different soil depth at each succession stage showed that 0–10 cm was higher than 10–20 cm, but the content of TK had no obvious change. The variation trend of the soil stoichiometric characteristics with the succession was quite different. At the soil profile level, except for no significant difference between the depth of different soil layers in C:N, the others showed that 0–10 cm was higher than 10–20 cm. The results of redundancy analysis showed that soil depth and community succession were the main factors to regulate soil nutrition content and stoichiometric characteristics in the region, with the explanatory degree of 32.82% and 32.19%, respectively.
    ConclusionSoil organic carbon content in the study area was relatively high, N and P contents were rich , plant growth restricted by N (or P) element may be caused by the low effectiveness of soil nutrient content.Reducing human disturbance, and appropriate protection can promote the positive succession of community, improve the stability and anti-interference of the karst forest ecosystem, and conducive to the accumulation of soil nutrients.The results preliminarily reveal the degree to which many influencing factors can explain soil nutrition content and stoichiometric characteristics, which is of important guiding significance to the protection of karst forest.
  • [1]
    Elser J J, Dobberfuhl D, MacKay N A, et al. Organism size, life history, and N: P stoichiometry: Towards a unified view of cellular and ecosystem processes[J]. Bioscience, 1996, 46(1): 674−684.
    [2]
    曾德惠, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6):1007−1019. doi: 10.3321/j.issn:1005-264X.2005.06.018

    Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica, 2005, 29(6): 1007−1019. doi: 10.3321/j.issn:1005-264X.2005.06.018
    [3]
    Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystem[J]. Ecology Letters, 2000, 3(6): 540−555. doi: 10.1046/j.1461-0248.2000.00185.x
    [4]
    章广琦, 张萍, 陈云明, 等. 黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征[J]. 生态学报, 2018, 38(4):1328−1336.

    Zhang G Q, Zhang P, Chen Y M, et al. Stoichiometric characteristics of Robinia pseudoacacia and Pinus tabuliformis plantation ecosystems in the Loess hilly-gully region, China[J]. Acta Ecologica Sinica, 2018, 38(4): 1328−1336.
    [5]
    Sterner R W, Elser J J, Vitousek T. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002: 167−196.
    [6]
    王树力, 郝玉琢, 周磊, 等. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态[J]. 北京林业大学学报, 2018, 40(10):24−33.

    Wang S L, Hao Y Z, Zhou L, et al. Seasonal variations of leaf nutrient element concentrations and their stoichiometric characteristics in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2018, 40(10): 24−33.
    [7]
    屈凡柱, 孟灵, 付战勇, 等. 不同生境条件下滨海芦苇湿地C、N、P化学计量特征[J]. 生态学报, 2018, 38(5):1731−1738.

    Qu F Z, Meng L, Fu Z Y, et al. The stoichiometry characterization of carbon, nitrogen and phosphorus in different reed-dominated coastal wetland habitats[J]. Acta Ecologica Sinica, 2018, 38(5): 1731−1738.
    [8]
    杨新芳, 鲍雪莲, 胡国庆, 等. 大兴安岭不同火烧年限森林凋落物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2016, 27(5):1359−1367.

    Yang X F, Bao X L, Hu G Q, et al. C: N: P stoichiometry characteristics of litter and soil of forests in Great Xing ’an Mountains with different fire years[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1359−1367.
    [9]
    朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682.

    Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682.
    [10]
    陶冶, 张元明, 周晓兵. 伊犁野果林浅层土壤养分生态化学计量特征及其影响因素[J]. 应用生态学报, 2016, 27(7):2239−2248.

    Tao Y, Zhang Y M, Zhou X B. Ecological stoichiometry of surface soil nutrient and its influencing factors in the wild fruit forest in Yili region, Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2239−2248.
    [11]
    曹祥会, 龙怀玉, 周脚根, 等. 中温−暖温带表土碳氮磷生态化学计量特征的空间变异性:以河北省为例[J]. 生态学报, 2017, 37(18):6053−6063.

    Cao X H, Long H Y, Zhou J G, et al. Spatial variation of ecological stoichiometry characteristics of topsoil carbon, nitrogen and phosphorus in Hebei Province, China[J]. Acta Ecologica Sinica, 2017, 37(18): 6053−6063.
    [12]
    吕金林, 闫美杰, 宋变兰, 等. 黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征[J]. 生态学报, 2017, 37(10):3385−3393.

    Lü J L, Yan M J, Song B L, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in an oak forest and a blank locust plantation in the Loess hilly region[J]. Acta Ecologica Sinica, 2017, 37(10): 3385−3393.
    [13]
    庞圣江, 张培, 贾宏炎, 等. 桂西北不同森林类型土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(1):17−23.

    Pang S J, Zhang P, Jia H Y, et al. Research on soil ecological stoichiometry under different forest types in Northwest Guangxi Chinese[J]. Agricultural Science Bulletin, 2015, 31(1): 17−23.
    [14]
    张伟, 王克林, 刘淑娟, 等. 喀斯特峰丛洼地植被演替过程中土壤养分的积累及影响因素[J]. 应用生态学报, 2013, 24(7):1801−1808.

    Zhang W, Wang K L, Liu S J, et al. Soil nutrient accumulation and its affecting factors during vegetation succession in karst peak-cluster depressions of South China[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1801−1808.
    [15]
    朱双燕, 王克林, 曾馥平, 等. 广西喀斯特次生林地表碳库和养分库特征及季节动态[J]. 水土保持学报, 2009, 23(5):237−242. doi: 10.3321/j.issn:1009-2242.2009.05.051

    Zhu S Y, Wang K L, Zeng F P, et al. Carbon and nutrient pools and their seasonal changes of forest floor in secondary forest in karst region of Guangxi[J]. Journal of Soil and Water Conservation, 2009, 23(5): 237−242. doi: 10.3321/j.issn:1009-2242.2009.05.051
    [16]
    喻理飞, 朱守谦, 叶镜中, 等. 退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学, 2002, 38(1):1−7. doi: 10.3321/j.issn:1001-7488.2002.01.001

    Yu L F, Zhu S Q, Ye J Z, et al. Dynamics of a degraded karst forest in the process of natural restoration[J]. Scientia Silvae Sinicae, 2002, 38(1): 1−7. doi: 10.3321/j.issn:1001-7488.2002.01.001
    [17]
    唐成, 杜虎, 宋同清, 等. 喀斯特峰丛坡地不同土地利用方式下土壤N、P空间变异特征[J]. 生态学杂志, 2013, 32(7):1683−1689.

    Tang C, Du H, Song T Q, et al. Spatial heterogeneity of soil nitrogen and phosphorus under different land use patterns in depressions between karst hills[J]. Chinese Journal of Ecology, 2013, 32(7): 1683−1689.
    [18]
    朱守谦. 喀斯特森林生态研究(Ⅱ)[M]. 贵阳: 贵州人民出版社, 1997.

    Zhu S Q. Ecological research of karst forest (Ⅱ)[M]. Guiyang: Guizhou Renmin Press, 1997.
    [19]
    国家林业局. 中华人民共和国林业行业标准−森林土壤分析方法(LY/T 1210-1275-1999)[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Forestry industry standard of the People’s Republic of China: analysis method of forest soil (LY/T 1210-1275-1999)[S]. Beijing: China Standard Press, 1999.
    [20]
    吴鹏. 茂兰喀斯特森林自然恢复过程中植物叶片−凋落物−土壤生态化学计量特征研究[D]. 北京: 中国林业科学研究院, 2017: 25−123.

    Wu P. Study on ecological stoichiometric characteristics of plant leaf-litter-soil in the process of natural restoration in Maolan karst forest[D]. Beijing: Chinese Academy of Forestry, 2017: 25−123.
    [21]
    张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34(22):6538−6547.

    Zhang K, He M Z, Li X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J]. Acta Ecologica Sinica, 2014, 34(22): 6538−6547.
    [22]
    李红林, 贡璐, 朱美玲, 等. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52(6):1345−1355.

    Li H L, Gong L, Zhu M L, et al. Stoichiometric characteristics of soil in an oasis on Northern edge of Tarim Basin, China[J]. Acta Pedologica Sinica, 2015, 52(6): 1345−1355.
    [23]
    胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征[J]. 应用生态学报, 2014, 25(3):632−638.

    Hu Y S, Yao X Y, Liu Y H. N and P stoichiometric traits of plant and soil in different forest succession stages in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 632−638.
    [24]
    Leps J, Smilauer P. Multivariate analysis of ecological data using CANOCO[M]. Cambridge: Cambridge University Press, 2003.
    [25]
    McGroddy M E, Daufresne T, Hedin L O. Scaling of C: N: P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351
    [26]
    王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 2000, 55(5):533−544.

    Wang S Q, Zhou C H, Li K R, et al. Analysis on spatial distribution characteristics soil organic carbon reservoir in China[J]. Acta Geographica Sinica, 2000, 55(5): 533−544.
    [27]
    青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析[J]. 草业学报, 2015, 24(3):38−47.

    Qing Y, Sun F D, Li Y, et al. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China[J]. Acta Prataculturae Sinica, 2015, 24(3): 38−47.
    [28]
    Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1): 139−151.
    [29]
    杨阳, 刘秉儒, 杨新国, 等. 荒漠草原中不同密度人工柠条灌丛土壤化学计量特征[J]. 水土保持通报, 2014, 34(5):67−73.

    Yang Y, Liu B R, Yang X G, et al. Soil stoichiometry characteristics of artificial Caragana korshinskii shrubs with different density in desert steppe[J]. Bulletin of Soil and Water Conservation, 2014, 34(5): 67−73.
    [30]
    罗亚勇, 张宇, 张静辉, 等. 不同退化阶段高寒草甸土壤化学计量特征[J]. 生态学杂志, 2012, 31(2):254−260.

    Luo Y Y, Zhang Y, Zhang J H, et al. Soil stoichiometry characteristics of alpine meadow at its different degradation stages[J]. Chinese Journal of Ecology, 2012, 31(2): 254−260.
    [31]
    张忠华, 胡刚, 祝介东, 等. 喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J]. 植物生态学报, 2011, 35(10):1038−1049.

    Zhang Z H, Hu G, Zhu J D, et al. Spatial heterogeneity of soil nutrients and its impact on tree species distribution in a karst forest of Southwest China[J]. Chinese Journal of Plant Ecology, 2011, 35(10): 1038−1049.
    [32]
    刘方, 刘元生, 卜通达, 等. 贵州喀斯特山区植被演替对土壤有效性氮磷含量及酶活性的影响[J]. 中国岩溶, 2012, 31(1):31−35. doi: 10.3969/j.issn.1001-4810.2012.01.006

    Liu F, Liu Y S, Bu T D, et al. Impact of vegetation community succession on available N, P and enzyme activity of the soil in karst hill of Guizhou Province[J]. Carsologica Sinica, 2012, 31(1): 31−35. doi: 10.3969/j.issn.1001-4810.2012.01.006
    [33]
    张向茹, 马露莎, 陈亚南, 等. 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J]. 土壤学报, 2013, 50(4):818−825.

    Zhang X R, Ma L S, Chen Y N, et al. Ecological stoichiometry characteristics of Robinia pseudoacacia forest soil in different latitudes of loess plateau[J]. Acta Pedologica Sinica, 2013, 50(4): 818−825.
    [34]
    孙娇, 赵发珠, 韩新辉, 等. 不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系[J]. 生态学报, 2016, 36(21):6879−6888.

    Sun J, Zhao F Z, Han X H, et al. Ecological stoichiometry of soil aggregates and relationship with soil nutrients of different-aged Robinia pseudoacacia forests[J]. Acta Ecologica Sinica, 2016, 36(21): 6879−6888.
    [35]
    Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235−252. doi: 10.1007/s10533-007-9132-0
    [36]
    Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151−163. doi: 10.1111/ejs.1996.47.issue-2
    [37]
    曹娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J]. 林业科学, 2015, 51(7):1−8.

    Cao J, Yan W D, Xiang W H, et al. Stoichiometry characterization of soil C, N and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China[J]. Scientia Silvae Sinicae, 2015, 51(7): 1−8.
    [38]
    Iii F S C, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology[M]. New york: Springer, 2011: 369−397.
    [39]
    秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68−76.

    Qin J, Kong H Y, Liu H. Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests[J]. Journal of Northwest A&F University (National Science Edition), 2016, 44(2): 68−76.
    [40]
    杨慧, 涂春艳, 李青芳, 等. 岩溶区次生林地不同地貌部位土壤C、N、P化学计量特征[J]. 南方农业学报, 2015, 46(5):777−781. doi: 10.3969/j:issn.2095-1191.2015.5.777

    Yang H, Tu C Y, Li Q F, et al. Analysis of C, N and P stoichiometry of secondary forest in different landforms in karst area[J]. Journal of Southern Agriculture, 2015, 46(5): 777−781. doi: 10.3969/j:issn.2095-1191.2015.5.777
    [41]
    Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205−220. doi: 10.1890/11-0416.1
  • Related Articles

    [1]Han Rong, Tian Qing, Sun Yimei, Li Juanxia, Zhu Zhu. Stoichiometric characteristics of carbon, nitrogen and phosphorus in the leaves of 42 woody landscape plants in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(7): 110-119. DOI: 10.12171/j.1000-1522.20220168
    [2]Xiang Yunxi, Pan Ping, Chen Shengkui, Ouyang Xunzhi, Ning Jinkui, Wu Zirong, Ji Renzhan. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95-103. DOI: 10.13332/j.1000-1522.20190029
    [3]Liu Qin, Deng Hongping, Li Zongfeng, Liang Sheng, Li Qiulin, Ni Dongping. Characteristics of plant community in the Guizhou Chishui Alsophila spinulata National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(1): 19-31. DOI: 10.13332/j.1000-1522.20180165
    [4]TU Lei, CUI Guo-fa.. Improved method of continuous forest inventory in nature reserves.[J]. Journal of Beijing Forestry University, 2016, 38(8): 111-115. DOI: 10.13332/j.1000-1522.20160067
    [5]ZHAO Tian-liang. Niche characteristics of dominants in Platycladus orientalis forests in Yanshan Nature Reserve, Shanxi[J]. Journal of Beijing Forestry University, 2015, 37(8): 24-30. DOI: 10.13332/j.1000-1522.20150039
    [6]LIU Lin-xin, LIU Chuan-zhao, MAO Zi-jun. Seed plant flora of Fenglin Nature Reserve in Heilongjiang Province, northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(4): 126-135.
    [7]LUO Ju-chun, WANG Ling-yan, . Eco-tourism problems of nature reserves in China[J]. Journal of Beijing Forestry University, 2010, 32(3): 221-224.
    [8]ZHOU Shu-lin, CUI Guo-fa, LI Quan-ji, SONG Lian-cheng, MENG Qing-feng, TANG Ming-xia. Developing an evaluation framework on natural capital of nature reserve.[J]. Journal of Beijing Forestry University, 2009, 31(4): 26-29.
    [9]GAO Zhi-liang1, YU Xin-xiao1, YUE Yong-jie1, IAN Zhen, ANG Ben-qin, AO Bo, IN Yong-sheng. Forest health assessment in Songshan Nature Reserve of Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 127-131.
    [10]XU Ji-liang, CUI Guo-fa, LI Zhong. Approaches for setting the minimum area of nature reserve[J]. Journal of Beijing Forestry University, 2006, 28(5): 129-132.
  • Cited by

    Periodical cited type(44)

    1. 韩彦隆,魏亚娟,左小锋,左轶璆,康帅,童国利,李建媛,王永平. 吉兰泰荒漠绿洲过渡带土壤生态化学计量特征及养分恢复状况研究. 水土保持研究. 2025(02): 207-214+223 .
    2. 罗婷,黄甫昭,李健星,陆芳,文淑均,阮枰臻,李先琨. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征. 植物资源与环境学报. 2024(02): 80-90 .
    3. 任泽文,陈昕,陈玥,钟曲颖,余泽平,刘骏,杨清培,宋庆妮. 亚热带森林演替中优势种茎干-土壤碳氮磷生态化学计量的变化特征. 江西农业大学学报. 2024(02): 401-410 .
    4. 侯贻菊,姚雾清,杨光能,崔迎春,周华. 黔竹笋期生长特性及配方施肥效应研究. 贵州林业科技. 2024(02): 19-24 .
    5. 刘亚博,冯天骄,王平,卫伟. 黄土丘陵区典型小流域不同植被恢复方式土壤理化性质差异及其影响因素. 生态学报. 2024(15): 6652-6666 .
    6. 史丽娟,吕海涛,张树梓,李联地,任启文,冯广. 白洋淀上游典型林分类型土壤理化性质及其化学计量特征. 土壤通报. 2024(04): 960-967 .
    7. 武仁杰,邢玮,葛之葳,毛岭峰,彭思利. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报. 2023(01): 155-163 .
    8. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    9. 刘根,岳翰林,陈雨志,汪富资,李先宝,代智蓝,李德欢,李思雨,卫万荣. 3种修复措施对高原高速公路边坡土壤化学计量特征的影响. 草业科学. 2023(01): 71-78 .
    10. 王艺伟,仇模升,孙彩丽. 植物反馈作用对火棘群落土壤养分、酶活性及化学计量特征的影响. 中南林业科技大学学报. 2023(03): 127-134 .
    11. 梁楚欣,范弢,陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子. 浙江农林大学学报. 2023(03): 511-519 .
    12. 白金珂,李笑雨,王力. 1980s与2020s青藏高原南部土壤质量变化. 应用生态学报. 2023(05): 1367-1374 .
    13. 徐子涵,王磊,崔明,刘玉国,赵紫晴,李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征. 南京林业大学学报(自然科学版). 2023(03): 173-181 .
    14. 何芳远,苏权,陈坤铨,陈善栋,姜勇,罗明,梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建. 广西师范大学学报(自然科学版). 2023(03): 171-181 .
    15. 吴丹,温晨,卫伟,张钦弟. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征. 广西植物. 2023(05): 923-935 .
    16. 宁静,杨磊,曹建华,李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点. 中国岩溶. 2023(02): 321-336 .
    17. 李雪梅,舒英格. 不同土地利用类型下土壤养分变化及生态化学计量特征分析. 中国农学通报. 2023(28): 62-69 .
    18. 周士锋,魏亚娟,何磊,王项飞,刘美萍,刘澜波. 包头市南海湿地不同季节土壤养分分布特征. 北方园艺. 2023(20): 69-76 .
    19. 侯贻菊,姚雾清,杨光能,崔迎春,周华,张喜. 黔竹秆形结构和地上生物量分配格局研究. 竹子学报. 2023(04): 51-57 .
    20. 胡林安,邱江梅,李强. 云南岩溶断陷盆地植被演替土壤碳氮磷化学计量学特征. 中国岩溶. 2023(06): 1213-1223 .
    21. 袁在翔,关庆伟,李俊杰,韩梦豪,金雪梅,陈霞. 不同植被恢复模式对紫金山森林土壤理化性质的影响. 东北林业大学学报. 2022(01): 52-57 .
    22. 曹全恒 ,胡健 ,陈雪玲 ,孙梅玲 ,刘小龙 ,杨丽雪 ,周青平 . 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响. 草地学报. 2022(03): 523-531 .
    23. 蔡雅梅,冯民权,肖瑜. 人类活动对河岸带植被氮磷生态化学计量特征的影响——以汾河临汾段为例. 水土保持通报. 2022(01): 17-25 .
    24. 孟海,王海燕,侯文宁,赵晗,宁一泓. 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素. 水土保持学报. 2022(02): 275-282+291 .
    25. 章润阳,钱前,刘坤平,梁月明,张伟,靳振江,潘复静. 喀斯特不同土地利用方式和恢复模式对土壤酶活性C∶N∶P比值的影响. 广西植物. 2022(06): 970-982 .
    26. 王杰. 河岸带土壤氮磷时空分布及影响因素分析. 水土保持应用技术. 2022(04): 13-16 .
    27. 孙渝雯,马赞文,陶贞,张乾柱,唐文魁,吴迪,钟庆祥,王振刚,丁健. 海南岛西南部土壤生物硅分布的时空差异及其驱动机制. 生态学报. 2022(17): 7092-7104 .
    28. 张萌,沈雅飞,陈天,王丽君,曾立雄,孙鹏飞,肖文发,田耀武,程瑞梅. 宜阳县不同森林类型土壤化学计量特征. 陆地生态系统与保护学报. 2022(02): 1-8 .
    29. 陈培云,范弢,何停,户红红. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报. 2022(06): 1549-1556 .
    30. 刘翔,张连凯,黄超,徐灿,马一奇,杨慧. 广西岩溶区芒果园土壤碳氮磷化学计量特征. 南方农业学报. 2022(12): 3346-3356 .
    31. 李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响. 地球学报. 2021(03): 417-425 .
    32. 陈云,李玉强,王旭洋,牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报. 2021(10): 4213-4225 .
    33. 蔡雅梅,冯民权. 汾河河岸带土壤氮、磷的时空分布规律及其影响因素研究. 水土保持学报. 2021(04): 222-229+236 .
    34. 蔡国俊,锁盆春,张丽敏,符裕红,李安定. 黔南喀斯特峰丛洼地3种建群树种不同器官C、N、P化学计量特征. 贵州师范大学学报(自然科学版). 2021(05): 36-44 .
    35. 魏亚娟,汪季,党晓宏,韩彦隆,高岩,李鹏,金山. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报. 2021(10): 102-110+139 .
    36. 杨洪炳,肖以华,李明,许涵,史欣,郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系. 生态环境学报. 2021(10): 1976-1989 .
    37. 陈剑,王四海,杨卫,吴超. 外来入侵植物肿柄菊群落动态变化特征. 生态学杂志. 2020(02): 469-477 .
    38. 郑鸾,龙翠玲. 茂兰喀斯特森林不同地形土壤生态化学计量特征. 南方农业学报. 2020(03): 545-551 .
    39. 夏光辉,郭青霞,卢庆民,杜轶,康庆. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征. 水土保持通报. 2020(02): 140-147+153 .
    40. 吴鹏,崔迎春,赵文君,侯贻菊,朱军,丁访军,杨文斌. 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报. 2020(14): 5063-5080 .
    41. 朱平宗,张光辉,杨文利,赵建民. 红壤区林地浅沟不同植被类型土壤生态化学计量特征. 水土保持研究. 2020(06): 60-65 .
    42. 余杭,罗清虎,李松阳,林勇明,王道杰. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性. 山地学报. 2020(04): 532-541 .
    43. 郭汝凤,刘鑫铭,李冠军,黄婷,吴承祯,林勇明,李键. 武夷山人工湿地系统植物生长期内土壤-植物碳氮磷变化特点. 应用与环境生物学报. 2020(02): 433-441 .
    44. 闫丽娟,王海燕,李广,吴江琪. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报. 2019(05): 190-196+204 .

    Other cited types(42)

Catalog

    Article views (11258) PDF downloads (181) Cited by(86)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return