• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Han Mei, Wen Peng, Xu Huimin, Zhang Yongfu, Li Weike, Liu Xiaodong. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95-101. DOI: 10.13332/j.1000-1522.20180249
Citation: Han Mei, Wen Peng, Xu Huimin, Zhang Yongfu, Li Weike, Liu Xiaodong. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95-101. DOI: 10.13332/j.1000-1522.20180249

Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing

More Information
  • Received Date: August 05, 2018
  • Revised Date: September 03, 2018
  • Published Date: September 30, 2018
  • ObjectivePinus tabuliformis is a typical coniferous forest in North China, which is prone to forest fires. By simulating the surface fire behavior of Pinus tabuliformis, it can provide a scientific basis for forest combustibles management, forest fire prevention and fire fighting.
    MethodTaking Pinus tabuliformis forest as the study objective, we simulated the surface fire behavior with BehavePlus5.0 software.
    ResultThe fuel load of 1 hour timelag, 10 hour timelag, 100 hour timelag and shrub accounted for 78%, 5%, 4% and 13%, respectively. According to the research date, the average value of the surface fire spread rate of Pinus tabuliformis forest was 2.1 m/min, the average value of the fire line intensity was 270 kW/m, the average value of the height of the flame is 0.95 m, and the average value of the heat per unit area was 7 139 kJ/m2. Under the conditions of strong wind and dry weather with 1 hour timelag fuel moisture of 6% and a wind speed of 40 km/hour, the average value of the surface fire spread rate of Pinus tabuliformis forest was 15.1 m/min. The average value of the fire line intensity was 3 278.5 kW/m, and the average flame height was 3.1 m, the average value of the heat per unit area was 12 337.5 kJ/m2. Simulation of surface fire behavior study can provide a reference for the pruning height of Pinus tabuliformis.
    ConclusionThe results show that 1 hour timelag fuel load was significantly higher than the other type of fuel. The surface fire spreads slowly, the fire intensity was low, the flame height was lower than the first branch, and it was easy to be extinguished under normal weather conditions. The simulation results show that under the condition of low water content, the wind speed of the Pinus tabuliformis forest will significantly increase the surface fire spread speed, which is difficult to extinguish artificially. It is necessary to clean up the surface fuel and reduce the fire risk.
  • [1]
    Forrestel A B, Ramage B S, Moody T, et al. Disease, fuels and potential fire behavior: impacts of sudden oak death in two coastal California forest types[J]. Forest Ecology & Management, 2015, 348:23-30. http://cn.bing.com/academic/profile?id=6a782045b1f1c639646d574d3840fa9b&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    田晓瑞, 舒立福, 赵凤君, 等.气候变化对中国森林火险的影响[J].林业科学, 2017, 53(7):159-169. http://d.old.wanfangdata.com.cn/Periodical/lykx201707016

    Tian X R, Shu L F, Zhao F J, et al. Impacts of climate change on forest fire danger in China[J]. Scientia Silvae Sinicae, 2017, 53(7):159-169. http://d.old.wanfangdata.com.cn/Periodical/lykx201707016
    [3]
    Rothermel R C. A mathematical model for predicting fire spread in wildland fuels[M]. Ogden: USDA Forest Service General Technical Report, 1972.
    [4]
    Bilgili E, Durmaz B D, Saglam B, et al. Fire behaviour in immature calabrian pine plantations[J]. Forest Ecology & Management, 2006, 234:S112-S112. http://cn.bing.com/academic/profile?id=af8904844d50f9cc1a7676880df77451&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    赵璠, 舒立福, 周汝良, 等.西南林区森林火灾火行为模拟模型评价[J].应用生态学报, 2017, 28(10):3144-3154. http://d.old.wanfangdata.com.cn/Periodical/yystxb201710005

    Zhao P, Shu L F, Zhou R L, et al. Evaluating fire behavior simulators in southwestern China forest area[J]. Chinese Journal of Applied Ecology, 2017, 28(10):3144-3154. http://d.old.wanfangdata.com.cn/Periodical/yystxb201710005
    [6]
    陈宏伟, 常禹, 胡远满, 等.大兴安岭呼中林区森林死可燃物载量及其影响因子[J].生态学杂志, 2008, 27(1):50-55. http://d.old.wanfangdata.com.cn/Periodical/stxzz200801009

    Chen H W, Chang Y, Hu Y M, et al. Load of forest surface dead fuel in Huzhong area of Daxing' anling Mountains and relevant affecting factors[J].Journal of Ecology, 2008, 27(1):50-55. http://d.old.wanfangdata.com.cn/Periodical/stxzz200801009
    [7]
    吴志伟, 贺红士, 梁宇, 等.丰林自然保护区森林可燃物模型的建立[J].应用生态学报, 2012, 23(6):1503-1510. http://d.old.wanfangdata.com.cn/Periodical/yystxb201206011

    Wu Z W, He H S, Liang Y, et al. Establishment of standard forest fuel models for Fenglin Natural Reserve, Heilongjiang Province, China [J]. Chinese Journal of Applied Ecology, 2012, 23(6):1503-1510. http://d.old.wanfangdata.com.cn/Periodical/yystxb201206011
    [8]
    王明玉, 李涛, 任云卯, 等.森林火行为与特殊火行为研究进展[J].世界林业研究, 2009, 22(2):45-49. http://www.cnki.com.cn/Article/CJFDTotal-SJLY200902009.htm

    Wang M Y, Li T, Ren Y M, et al. Research advances in forest fire behavior and special forest fire behaviors[J].World Forestry Research, 2009, 22(2):45-49. http://www.cnki.com.cn/Article/CJFDTotal-SJLY200902009.htm
    [9]
    武军, 朱霁平, 贾敬蕊, 等.一种基于聚类分析的由林分因子估算地表可燃物载量的方法[J].火灾科学, 2011, 20(2):99-104. doi: 10.3969/j.issn.1004-5309.2011.02.005

    Wu J, Zhu J P, Jia J R, et al. Forest surface fuel load estimation by stand factors based on cluster analysis method[J].Fire Safety Science, 2011, 20(2):99-104. doi: 10.3969/j.issn.1004-5309.2011.02.005
    [10]
    王刚, 金晓钟.细小可燃物易燃性的试验研究[J].森林防火, 1995(3):5-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500452011

    Wang G, Jin X Z. Experimental study on flammability of fine fuel[J]. Forest Fire Prevention, 1995(3):5-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500452011
    [11]
    Heinsch F A, Andrews P L. BehavePlus fire modeling system, version 5.0[J]. USDA Forest Service-General Technical Report RMRS-GTR, 2010, 106(213):1-110.
    [12]
    Andrews P L. Current status and future needs of the BehavePlus Fire Modeling System[J]. International Journal of Wildland Fire, 2014, 23(1):21. doi: 10.1071/WF12167
    [13]
    Kucuk O, Bilgili E, Fernandes P M. Fuel modelling and potential fire behavior in Turkey[J]. Sumarski List, 2015, 139(11-12):553-560. https://www.worldcat.org/title/behaveplus-fire-modeling-system-version-50-design-and-features/oclc/713836248
    [14]
    黄小荣, 庞世龙, 彭玉华, 等.广西苍梧马尾松林和大叶栎林的火行为比较[J].火灾科学, 2015(1):9-15. doi: 10.3969/j.issn.1004-5309.2015.01.02

    Huang X R, Pang S L, Peng Y H, et al.Assessing fire potential of Pinus massoniana and Castanopsis fissa forests in Cangwu by fuel modelling[J]. Fire Safety Science, 2015(1):9-15. doi: 10.3969/j.issn.1004-5309.2015.01.02
    [15]
    宋洁, 朱敏, 刘晓东, 等.疏伐对北京西山油松林可燃物特征及潜在火行为影响[J].北京林业大学学报, 2017, 39(5):41-47. doi: 10.13332/j.1000-1522.20160353

    Song J, Zhu M, Liu X D, et al. Effects of thinning on fuel characteristics and potential fire behaviors of Pinus tabuliformis forest in Beijing West Mountain[J].Journal of Beijing Forestry University, 2017, 39(5):41-47. doi: 10.13332/j.1000-1522.20160353
    [16]
    卢欣艳.北京西山森林火险影响因素时空规律研究[D].北京: 北京林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010128835.htm

    Lu X Y. The spatial and temporal rules of forest fire factors in Beijng Xishan Centre[D]. Beijing: Beijing Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010128835.htm
    [17]
    王晓丽, 牛树奎, 马钦彦, 等.以地表死可燃物评估八达岭林场森林燃烧性[J].生态学报, 2009, 29(10):5313-5319. doi: 10.3321/j.issn:1000-0933.2009.10.017

    Wang X L, Niu S K, Ma Q Y, et al.Forests combustibility evaluation in Badaling Forest Farm based on surface dead fuel[J]. Acta Ecologica Sinica, 2009, 29(10):5313-5319. doi: 10.3321/j.issn:1000-0933.2009.10.017
    [18]
    王凯, 牛树奎.基于Rothermel模型的北京鹫峰国家森林公园潜在火行为[J].浙江农林大学学报, 2016, 33(1):42-50. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601006

    Wang K, Niu S K. Research on the potential fire behavior in Jiufeng National Forest Park of Beijing based on the Rothermel Model [J]. Journal of Zhejiang A & F University, 2016, 33(1):42-50. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601006
    [19]
    王晓丽.北京山区森林燃烧性研究[D].北京: 北京林业大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1766516

    Wang X L. Study on combustibility of forests in Beijing Mountain Area[D]. Beijing: Beijing Forestry University, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1766516
    [20]
    杨淑香, 王立明.北京十三陵林场公益林可燃物特征与经营[J].森林防火, 2007(1):14-17. doi: 10.3969/j.issn.1002-2511.2007.01.007

    Yang S X, Wang L M.The public welfare forest combustible characteristic and management of Beijing Ming Tombs Farm[J].Forest Fire Prevention, 2007(1):14-17. doi: 10.3969/j.issn.1002-2511.2007.01.007
    [21]
    Page W, Jenkins M J. Predicted fire behavior in selected mountain pine beetle-infested lodgepole pine[J]. Forest Science, 2007, 53(6):662-674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ca659bd12b75cd351958acbf1646a72
    [22]
    胡海清, 陆昕, 孙龙, 等.大兴安岭典型林分地表死可燃物含水率动态变化及预测模型[J].应用生态学报, 2016, 27(7):2212-2224. http://d.old.wanfangdata.com.cn/Periodical/yystxb201607021

    Hu H Q, Lu X, Sun L, et al.Dynamics and prediction models of ground surface dead fuel moisture content for typical stands in Great Xing' an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2212-2224. http://d.old.wanfangdata.com.cn/Periodical/yystxb201607021
    [23]
    张国防.杉木人工林地表易燃物含水率变化规律的研究[J].森林防火, 2000(2):19-20. doi: 10.3969/j.issn.1002-2511.2000.02.013

    Zhang G F.Study on the moisture change of flammable surface fuel of Chinese fir plantation[J].Forest Fire Prevention, 2000(2):19-20. doi: 10.3969/j.issn.1002-2511.2000.02.013
    [24]
    Wu Z W, He H S, Chang Y, et al. Development of customized fire behavior fuel models for boreal forests of northeastern China[J]. Environmental Management, 2011, 48(6):1148-1157. doi: 10.1007/s00267-011-9707-3
    [25]
    Fontaine J B, Westcott V C, Enright N J, et al. Fire behaviour in south-western Australian shrublands: evaluating the influence of fuel age and fire weather[J]. International Journal of Wildland Fire, 2012, 21(4):385. doi: 10.1071/WF11065
    [26]
    Albini F A. Estimating wildfire behavior and effects[M]. Ogden: USDA Forest Service General Technical Report, 1976.
    [27]
    Anderson W R, Cruz M G, Fernandes P M, et al. A generic, empirical-based model for predicting rate of fire spread in shrublands[J]. International Journal of Wildland Fire, 2015, 24:443-460. doi: 10.1071/WF14130
    [28]
    舒立福, 王明玉, 田晓瑞, 等.关于森林燃烧火行为特征参数的计算与表述[J].林业科学, 2004, 40(3):179-183. doi: 10.3321/j.issn:1001-7488.2004.03.031

    Shu L F, Wang M Y, Tian X R, et al. Calculation and description of forest fire behavior characters[J].Scientia Silvae Sinicae, 2004, 40(3):179-183. doi: 10.3321/j.issn:1001-7488.2004.03.031
    [29]
    Hunter M E. Comprehensive guide to fuels treatment practices for ponderosa pine in the Black Hills, Colorado Front Range, and Southwest[M]. Ogden: USDA Forest Service-General Technical Report RMRS-GTR, 2007.
    [30]
    Cruz M G, Alexander M E, Sullivan A L, et al. Assessing improvements in models used to operationally predict wildland fire rate of spread[J]. Environmental Modelling & Software, 2018, 105:54-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57c53d5b64b2b66ee44745ed2b2100de
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1797) PDF downloads (46) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return