• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
Citation: Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304

Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing

More Information
  • Received Date: September 27, 2018
  • Revised Date: December 02, 2018
  • Published Date: December 31, 2018
  • ObjectiveStand structure is closely related to the fire behavior. Adjusting the stand structure can effectively lower the fire behavior. Analysis of the relationship between the structure of Pinus tabuliformis forest and the potential fire behavior on the surface of Miaofeng Mountain in Beijing provides scientific basis for the development of Miaofeng Mountain combustibles management measures.
    MethodIn this paper, the Pinus tabuliformis forest with similar topography and large structural difference was taken as the research object, and the data on trees, shrubs, herbs and fuel in the plot were investigated and measured. The fire behavior index was calculated by Rothermel model. The Pearson correlation analysis method was used to study the potential fire behavior of Pinus tabuliformis forests and its relationship with stand structure.
    Result(1) The potential fire spread rate (R), fire intensity (I) and unit area combustible heat (HPA) of Pinus tabuliformis were 2-6m/min, 300-1400kW/m and 4000-5500kJ/m2, respectively. There were also several larger values with fire behavior. (2) For the correlation between surface fire behavior and stand structure, in the arbor layer, R, I and average tree height (H) showed significantly positive correlations, and had little correlations with height of the lowest branches(Ht), cverage crown (Ct), the rate of crown length (TCRt) and diameter at breast height (Dg). In the shrub layer, R, I had a significantly negative correlation with shrub density (BDs) and N, but less correlated with shrub number (Hs). There was a significantly positive correlation between HPA and Hs. And BDs, N too large or too small were conducive to enhance the surface fire behavior, but when the shrub was moderate, the surface fire behavior was the lowest. In the layer of herb and fuel, bed height (h), herb coverage (Ch) and I showed a significantly positive correlation. The significant correlation between tightness (β) and logI was significantly correlated with HPA.(3)Interpretation of potential fire behavior on the surface, herbaceous fuel layer structure index>shrub layer structure index>arbor layer structure index. The interaction of herbaceous fuel layer and shrub layer structure index contributed the most.
    ConclusionThe potential fire behavior of Pinus tabuliformis forest is generally in low-intensity surface fire, which can cause medium-intensity surface fire and has the possibility of causing high-intensity surface fire. The potential fire behavior on the surface is positively correlated with the structure of the tree layer and the herb fuel layer, but negatively correlated with the shrub layer structure. Among them, the Ht of the arbor layer, the BDs, N and shrub coverage (Cs) of the shrub layer, and the Ch, h and β of the herb and fuel layer have significant effects on the surface potential fire behavior, and the effects of each level are herbaceous fuel litter layer>shrub layer>arbor layer. On the whole, the potential fire behavior of the surface is mainly affected by the above-ground combustibles, especially the herbaceous fuel layer, while the influence of the arbor layer is relatively small.
  • [1]
    胡海清, 牛树奎, 金森.林火生态与管理[M].北京:中国林业出版社, 2005: 72-91.

    Hu H Q, Niu S K, Jin S. Forest fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005: 72-91.
    [2]
    Bradstock R A, Hammill K A, Collins L. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia[J]. Landscap Ecol, 2010, 25(4): 607-619. doi: 10.1007/s10980-009-9443-8
    [3]
    Butler B W, Finney M A, Andrews P L, et al. A radiation-driven model for crown fire spread[J]. Canadian Journal of Forest Research, 2004, 34(8): 1588-1599. doi: 10.1139/x04-074
    [4]
    Zhou K, Liu N, Yuan X. Effect of wind on fire whirl over a line fire[J]. Fire Technology, 2016, 52(3):865-875. doi: 10.1007/s10694-015-0507-9
    [5]
    Alvarez A, Gracia M, Retana J. Fuel types and crown fire potential in Pinus halepensis forests[J]. European Journal of Forest Research, 2012, 131(2): 463-474. doi: 10.1007/s10342-011-0520-6
    [6]
    骆介禹.森林燃烧能量学[M].哈尔滨:东北林业大学出版社, 1992:45-85.

    Luo J Y. Forest combustion energetics[M]. Harbin: Northeast Forestry University Press, 1992:45-85.
    [7]
    王明玉, 李涛, 任云卯, 等.森林火行为与特殊火行为研究进展[J].世界林业研究, 2009, 22(2): 45-49.

    Wang M Y, Li T, Ren Y M, et al. Research advances in forest fire behavior and special forest fire behaviors[J]. World Forestry Research, 2009, 22(2):45-49.
    [8]
    Klutsch J G, Battaglia M A, West D R, et al. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in North-central Colorado[J]. Western Journal of Applied Forestry, 2011, 26(3): 101-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d721feacfe1afbf8ddd0db6a9168cfe5
    [9]
    Goodrick S L, Stanturf J A. Evaluating potential changes in fire risk from Eucalyptus plantings in the southern United States[J]. International Journal of Forestry Research, 2012, 2012(9): 233-234. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7233af122be203c8bb6f3d2333cb1095
    [10]
    王秋华, 肖慧娟, 李世友, 等.基于BehavePlus的昆明西山国家森林公园潜在火行为研究[J].浙江林业科技, 2013, 33(4): 43-48. doi: 10.3969/j.issn.1001-3776.2013.04.010

    Wang Q H, Xiao H J, Li S Y, et al. Study on potential fire behaviors of Xishan National Forest Park in Kunming using BehavePlus Model[J]. Journal of Zhejiang Forestry Science and Technology, 2013, 33(4): 43-48. doi: 10.3969/j.issn.1001-3776.2013.04.010
    [11]
    王凯, 牛树奎.基于Rothermel模型的北京鹫峰国家森林公园潜在火行为[J].浙江农林大学学报, 2016, 33(1): 42-50. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601006

    Wang K, Niu S K. Research on the potential fire behavior in Jiufeng National Forest Park of Beijing based on the Rothermel model[J]. Journal of Zhejiang A & F University, 2016, 33(1): 42-50. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601006
    [12]
    Rothermel R C. A mathematical model for predicting fire spread in wildland fuels[M]. Ogden: Usda Forest Service General Technical Report, 1972.
    [13]
    梁瀛, 李吉玫, 赵凤君, 等.天山中部天山云杉林地表可燃物载量及其影响因素[J].林业科学, 2017, 53(12): 153-160. doi: 10.11707/j.1001-7488.20171218

    Liang Y, Li J M, Zhao F J, et al. Surface fuel loads of Tianshan Spruce forests in the Central Tianshan Mountains and the impact factors[J]. Scientia Silvae Sinicae, 2017, 53(12): 153-160. doi: 10.11707/j.1001-7488.20171218
    [14]
    王晓丽.北京山区森林燃烧性研究[D].北京: 北京林业大学, 2010.

    Wang X L. Study on combustibility of forests in Beijing Mountain Area[D]. Beijing: Beijing Forestry University, 2010.
    [15]
    牛树奎, 王叁, 贺庆棠, 等.北京山区主要针叶林可燃物空间连续性研究:可燃物垂直连续性与树冠火发生[J].北京林业大学学报, 2012, 34(3): 1-9. http://j.bjfu.edu.cn/article/id/9746

    Niu S K, Wang S, He Q T, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area:fuel horizontal continuity and crown fire spread[J]. Journal of Beijing Forestry University, 2012, 34(3):1-9. http://j.bjfu.edu.cn/article/id/9746
    [16]
    牛树奎.北京山区主要森林类型火行为与可燃物空间连续性研究[D].北京: 北京林业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10022-1012261244.htm

    Niu S K. Fire behavior and fuel spatial continuity of major forest types in the Mountainous Area[D]. Beijing: Beijing Forestry University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10022-1012261244.htm
    [17]
    Wagner C E V. Conditions for the start and spread of crown fire[J]. Revue Canadienne De Recherche Forestière, 1977, 7(1):23-34. doi: 10.1139/x77-004
    [18]
    Bradshaw L S, Deeming J E, Burgan R E, et al. The 1978 national fire-danger rating system: technical documentation[M]. Ogden: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1984.
    [19]
    单延龙, 舒立福, 王洪伟, 等. Rothermel火蔓延模型特征参数的解析[J].森林防火, 2003(1):22-25. doi: 10.3969/j.issn.1002-2511.2003.01.012

    Shan Y L, Shu L F, Wang H W, et al. Analysis of characteristic parameters of Rothermel's fire spread model[J]. Forest Fire Prevention, 2003(1):22-25. doi: 10.3969/j.issn.1002-2511.2003.01.012
    [20]
    Byram G M. Combustion of forest fuels[C]//Davis K P. Forest fire: control and use. New York: McGraw-Hill Book Company, 1959: 77-84.
    [21]
    王新岩, 金森.美国国家火险等级系统中火险系统的原理与方法[J].森林防火, 2010(1):58-62. doi: 10.3969/j.issn.1002-2511.2010.01.017

    Wang X Y, Jin S. Principles and methods of fire-danger system in the United States Fire-danger Rating System[J]. Forest Fire Prevention, 2010(1):58-62. doi: 10.3969/j.issn.1002-2511.2010.01.017
    [22]
    张笑菁, 赵秀海, 康峰峰, 等.太岳山油松天然林林木的空间格局[J].生态学报, 2010, 30(18):4821-4827. http://d.old.wanfangdata.com.cn/Periodical/stxb201018001

    Zhang X J, Zhao X H, Kang F F, et al. Spatial pattern of the trees in a natural Pinus tabulaeformis forest in Taiyue Mountain[J]. Acta Ecologica Sinica, 2010, 30(18):4821-4827. http://d.old.wanfangdata.com.cn/Periodical/stxb201018001
    [23]
    石小龙, 杜彦昌, 王鹏, 等.小陇山油松人工林林冠指标相关性研究[J].西北林学院学报, 2018(3) :67-73. doi: 10.3969/j.issn.1001-7461.2018.03.11

    Shi X L, Du Y C, Wang P, et al. Correlation of crown indicators on Pinus tabuliformis plantation in Xiaolongshan Mountain[J]. Journal of Northwest Forestry University, 2018(3):67-73. doi: 10.3969/j.issn.1001-7461.2018.03.11
    [24]
    刘红梅, 王娜, 吕世杰, 等.蒙古栎幼树生长状况调查研究[J].内蒙古林业科技, 2013, 39(1):15-17. doi: 10.3969/j.issn.1007-4066.2013.01.004

    Liu H M, Wang N, Lü S J, et al. Study on growth status of Quercus mongolica saplings[J]. Journal of Inner Mongolia Forestry Science & Technology, 2013, 39(1):15-17. doi: 10.3969/j.issn.1007-4066.2013.01.004
    [25]
    Pierre Legendre, 喻梅, 何芳良, 等. β-多样性的研究:应用多元回归和典范分析研究生态方差的分解[J].植物生态学报, 2007, 31(5):976-981.

    Legendre P, Yu M, He F L, et al. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis[J]. Journal of Plant Ecology, 2007, 31(5):976-981.
    [26]
    Queck R, Maas H G, Harmansa S, et al. Wind fields in heterogeneous conifer canopies: parameterisation of momentum absorption using high-resolution 3D vegetation scans[J]. European Journal of Forest Research, 2012, 131(1):165-176. doi: 10.1007/s10342-011-0550-0
    [27]
    宋洁, 朱敏, 刘晓东, 等.疏伐对北京西山油松林可燃物特征及潜在火行为影响[J].北京林业大学学报, 2017, 39(5):41-47. doi: 10.13332/j.1000-1522.20160353

    Song J, Zhu M, Liu X D, et al. Effects of thinning on fuel characteristics and potential fire behaviors of Pinus tabuliformis forest in Beijing West Mountain[J] Journal of Beijing Forestry University, 2017, 39(5):41-47. doi: 10.13332/j.1000-1522.20160353
    [28]
    王晓丽, 牛树奎, 马钦彦, 等.北京地区主要针叶林易燃可燃物垂直分布[J].北京林业大学学报, 2009, 31(2):31-35. doi: 10.3321/j.issn:1000-1522.2009.02.005

    Wang X L, Niu S K, Ma Q Y, et al. Vertical distribution of flammable fuels in major conifer forests of Beijing area[J]. Journal of Beijing Forestry University, 2009, 31(2):31-35. doi: 10.3321/j.issn:1000-1522.2009.02.005
    [29]
    Fréjaville T, Curt T, Carcaillet C. Tree cover and seasonal precipitation drive understorey flammability in alpine mountain forests[J]. Journal of Biogeography, 2016, 43(9):1869-1880. doi: 10.1111/jbi.12745
    [30]
    张景群, 康永祥, 吴宽让, 等.秦岭森林潜在火行为数量分类及划分指标研究[J].林业科学, 2001, 37(1):101-106. doi: 10.3321/j.issn:1001-7488.2001.01.015

    Zang J Q, Kang Y X, Wu K R, et al. Studies on the quantitative classification and dividing indices of potential fire behavior of forest in Qinling[J]. Scientia Silvae Sinicae, 2001, 37(1):101-106. doi: 10.3321/j.issn:1001-7488.2001.01.015
  • Cited by

    Periodical cited type(10)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 倪靖峰,吕世琪,王占印,周超凡,刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性. 陆地生态系统与保护学报. 2024(01): 1-10 .
    3. 徐罗,亢新刚,陈月明,刘旭. 依据单因子评价体系的天然云冷杉针阔混交林立地质量评价. 东北林业大学学报. 2024(12): 25-31 .
    4. 周甲敏,刘兆刚,董灵波. 基于蓄积潜在生产力的小兴安岭阔叶混交林立地质量评价. 北京林业大学学报. 2024(12): 21-29 . 本站查看
    5. 龚宇浩,孙益群,董晨,胡彦蓉,高威芳. 基于广义代数差分法和因子选择的杉木人工林立地质量评价. 浙江农林大学学报. 2023(06): 1282-1291 .
    6. 沈剑波,王应宽,雷相东,雷渊才,汪求来,叶金盛. 基于BP神经网络的广东省针阔混交异龄林立地质量评价. 北京林业大学学报. 2019(05): 38-47 . 本站查看
    7. 秦倩倩,王海燕,李翔,雷相东,解雅麟,郑永林,耿琦. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素. 生态学报. 2019(12): 4519-4529 .
    8. 卢立华,冯益明,农友,李华,农良书,孙冬婧,黄德卫,明安刚. 基于林班尺度的森林立地类型划分与质量评价. 林业资源管理. 2018(02): 48-57 .
    9. 轩俊伟,朱静. 天山云杉立地指数地统计空间分析. 林业资源管理. 2017(03): 46-50 .
    10. 倪伟星. 闽北湿地松人工林立地质量精确评价. 武夷学院学报. 2017(12): 61-67 .

    Other cited types(9)

Catalog

    Article views (3184) PDF downloads (45) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return