• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Ruihong, Hui Gangying, Zhang Ganggang, Liu Wenzhen, Zhang Gongqiao, Hu Yanbo, Yang Aiming. Evaluating stand growth state by potential density of stocking[J]. Journal of Beijing Forestry University, 2019, 41(8): 13-18. DOI: 10.13332/j.1000-1522.20180340
Citation: Liu Ruihong, Hui Gangying, Zhang Ganggang, Liu Wenzhen, Zhang Gongqiao, Hu Yanbo, Yang Aiming. Evaluating stand growth state by potential density of stocking[J]. Journal of Beijing Forestry University, 2019, 41(8): 13-18. DOI: 10.13332/j.1000-1522.20180340

Evaluating stand growth state by potential density of stocking

More Information
  • Received Date: October 18, 2018
  • Revised Date: March 17, 2019
  • Available Online: July 05, 2019
  • Published Date: July 31, 2019
  • ObjectiveStand growth is a direct reflection of stand vitality, density of stocking is one of the most commonly used indices to reflect the degree of closeness and its growth status in a stand. Accurate calculation of standard basal area is the key to calculate density of stocking, but it has poor availability and applicability because of the difficulty to distinguish standard stand among all stands of an area. exploring an alternative index is an effective way to solve this problem. Therefore, the purpose of this study is to find the new index.
    MethodThe potential productivity of a forest is finite under certain site conditions. Based on the Law of Constant Ultimate Capacity, in this study, we analyzed Cunninghamia lanceolata plantations under continuous monitoring with its growth process data all in readiness, with Cunninghamia lanceolata standard tables, which compiled in 1989 as cross reference. The potential maximum basal area of the stand was expressed by the product of the average basal area of a certain percentage of larger individuals and the total number of trees in the stand. Comparing the proportion from 50%−80% at 5% interval, we seek to find the ratio when the deviation rate between the potential maximum basal area and standard basal area was at its minimal value, and analyzed the applicability of potential maximum basal area in natural forests on this basis.
    Resultthe results suggested when the proportion was 70%, the deviation rate between the potential maximum basal area and the standard basal area of all test plots was about ± 10%, and the difference between the potential density of stocking and the density of stocking was at its minimal value. Furthermore, in order to test the applicability to natural forests, statistical analysis indicated that there was a significant linear relationship between the basal area with 70% as the larger trees and the stand basal area in the natural forest. The results showed that the potential density of stocking of a stand could be calculated by the product of the average basal area with 70% as the larger trees and the total number of trees.
    ConclusionThe potential maximum stand basal area could be expressed as the product of the average basal area with 70% as the larger trees and the total number of trees. The potential density of stocking, as an alternative index, can replace the density of stocking to characterize density and growth status of a stand.
  • [1]
    惠刚盈, 张弓乔, 赵中华, 等. 天然混交林最优林分状态的π值法则[J]. 林业科学, 2016, 52(5):1−8.

    Hui G Y, Zhang G Q, Zhao Z H, et al. A new rule of π value of natural mixed forest optimal stand state[J]. Scientia Silvae Sinicae, 2016, 52(5): 1−8.
    [2]
    赵中华, 惠刚盈, 胡艳波, 等. 基于大小比数的林分空间优势度表达方法及其应用[J]. 北京林业大学学报, 2014, 36(1):78−82.

    Zhao Z H, Hui G Y, Hu Y B, et al. Method and application of stand spatial advantage degree based on the neighborhood comparison[J]. Journal of Beijing Forestry University, 2014, 36(1): 78−82.
    [3]
    Graz F P, Gadow K V. Application of a “stem number guide curve ” for sustainable harvest control in the dry woodland savanna of northern Namibia[J]. Journal of the South African Forestry Association, 2005, 204(1): 37−44. doi: 10.2989/10295920509505225
    [4]
    甄学宁. 马尾松和杉木用材林基准林分的探讨[J]. 森林与环境学报, 1995, 15(2):146−150.

    Zhen X N. Probe into the problems of the Quasi- standard stand of Pinus massoniana andCunninghamia lanceolata timber forest[J]. Journal of Forest and Environment, 1995, 15(2): 146−150.
    [5]
    杜纪山, 李悦黎. 混交林疏密度的计算[J]. 陕西林业科技, 1992(1):32−35.

    Du J S, Li Y L. Calculation of the density for mixed forest[J]. Shaanxi Forest Science and Technology, 1992(1): 32−35.
    [6]
    段爱国, 张建国, 孙洪刚, 等. 林分断面积生长模拟理论与技术研究[J]. 世界林业研究, 2013, 26(2):43−47.

    Duan A G, Zhang J G, Sun H G, et al. Research progress of growth simulation theories and technologies for stand basal area[J]. World Forestry Research, 2013, 26(2): 43−47.
    [7]
    Hui G Y. Wuchsmodelle fuer die Baumart Cunninghamia lanceolata[D]. Göttingen: Cuvillier Verlag Göttingen, 1998.
    [8]
    孙洪刚. 杉木人工林断面积生长规律及动态模拟[D]. 北京: 中国林业科学研究院, 2008.

    Sun H G. Basal area growth and model prediction in Cunninghamia lanceolata Plantation[D]. Beijing: Chinese Academy of Forestry, 2008.
    [9]
    张雄清, 张建国, 段爱国. 基于贝叶斯法估计杉木人工林树高生长模型[J]. 林业科学, 2014, 50(3):69−75.

    Zhang X Q, Zhang J G, Duan A G. Tree-height growth model for Cunninghamia lanceolata plantation based on bayesian method[J]. Scientia Silvae Sinicae, 2014, 50(3): 69−75.
    [10]
    童书振, 刘景芳. 全国杉木断面积、蓄积量标准表的编制[J]. 林业科技通讯, 1989, 10(8):9−11.

    Tong S Z, Liu J F. Establishment of national standard table for basal area and volume of Cunninghamia lanceolata[J]. Forest Science and Technology, 1989, 10(8): 9−11.
    [11]
    杜纪山, 唐守正. 林分断面积生长模型研究评述[J]. 林业科学研究, 1997, 10(6):599−606.

    Du J S, Tang S Z. The review of studies on stand basal area growth model[J]. Forest Research, 1997, 10(6): 599−606.
    [12]
    Bennett F A, Clutter J L. Multiple-product yield estimates for unthinned slash pine plantations[M]. New York: NTIS United States, 1983: 71−72
    [13]
    Rodríguez F, Pemán J, Aunós Á. A reduced growth model based on stand basal area: a case for hybrid poplar plantations in northeast Spain[J]. Forest Ecology & Management, 2010, 259(10): 2093−2102.
    [14]
    惠刚盈, 赵中华, 胡艳波, 等. 我国西北主要天然林经营模式设计[J]. 林业科学研究, 2016, 29(2):155−161. doi: 10.3969/j.issn.1001-1498.2016.02.001

    Hui G Y, Zhao Z H, Hu Y B, et al. Management models for natural forests in northwestern China[J]. Forest Research, 2016, 29(2): 155−161. doi: 10.3969/j.issn.1001-1498.2016.02.001
    [15]
    H·萨利科夫, B·阿什梅特科夫, 邓钦生, 等. 按优势木平均胸径及冠径确定标准断面积[J]. 华东森林经理, 1990, 4(2):47−49.

    Vladimir S H, Ashmetkov B, Deng Q S, et al. Standard basal area determined by mean DBH and crown diameter of dominant trees[J]. East China Forest Management, 1990, 4(2): 47−49.
  • Related Articles

    [1]Liu Ziyang, Qiang Bo, Zhang Hao, Fu Liyong, Guo Jinping. Influence of climate and site grade on biomass estimation of Larix gmelinii stand[J]. Journal of Beijing Forestry University, 2025, 47(1): 22-28. DOI: 10.12171/j.1000-1522.20240071
    [2]Luo Guangcheng, Lei Xiangdong, Shi Jingning, He Xiao, Xiang Wei, Li Yutang. Site quality evaluation of Larix olgensis plantations based on potential productivity in Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2025, 47(1): 1-10. DOI: 10.12171/j.1000-1522.20240173
    [3]Zhou Jiamin, Liu Zhaogang, Dong Lingbo. Site quality evaluation of broadleaved mixed forest in Xiaoxing’an Mountains of northeastern China based on volume potential productivity[J]. Journal of Beijing Forestry University, 2024, 46(12): 21-29. DOI: 10.12171/j.1000-1522.20240168
    [4]Yan Wei, Duan Guangshuang, Wang Yihan, Sun Zhao, Zhou Taolong, Fu Liyong. Construction of stand basal area and volume growth model for Quercus and Populus in Henan Province of central China[J]. Journal of Beijing Forestry University, 2019, 41(6): 55-61. DOI: 10.13332/j.1000-1522.20180311
    [5]Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. DOI: 10.13332/j.1000-1522.20190017
    [6]HUI Gang-ying, ZHAO Zhong-hua, ZHANG Gong-qiao. Priority of management measures for natural forests based on the stand state[J]. Journal of Beijing Forestry University, 2016, 38(1): 1-10. DOI: 10.13332/j.1000--1522.20150358
    [7]ZHANG Xiong-qing, LEI Yuan-cai, CHEN Xin-mei, WANG Jin-zeng. Application of forecast combination in prediction of stand basal area[J]. Journal of Beijing Forestry University, 2010, 32(4): 6-11.
    [8]YE Shao-ming, , ZHENG Xiao-xian, YANG Mei, XIE Wei-dong, ZHAO Li-jun, LIANG Hong-wen. Biomass and productivity of stratified mixed stands of Eucalyptus urophylla and Acacia mangium[J]. Journal of Beijing Forestry University, 2008, 30(3): 37-43.
    [9]ZHANG Bi-guang. Critical dehumidified state during dehumidification drying[J]. Journal of Beijing Forestry University, 2007, 29(6): 181-184. DOI: 10.13332/j.1000-1522.2007.06.039
    [10]XU Cheng-yang, ZHANG Hua, JIA Zhong-kui, XUE Kang, DU Peng-zhi, WANG Jing-guo. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2007, 29(4): 95-99. DOI: 10.13332/j.1000-1522.2007.04.022
  • Cited by

    Periodical cited type(7)

    1. 花军,杨舒. 热压板温度场数值模拟分析及结构参数优化. 林产工业. 2025(03): 44-51 .
    2. 田心池,于文吉,马红霞,林秋琴,薛勃,杨春梅. 重组竹制备过程中温度场变化规律与预测模型. 林业工程学报. 2023(01): 38-45 .
    3. 田心池,马红霞,薛勃,赖宇星,杨春梅,于文吉. 含水率对不同密度竹基纤维复合材料热压传热的影响. 木材科学与技术. 2022(05): 50-55+77 .
    4. 赵喜龙,王喜明,贺勤,王磊,邵伟. 人工林杨木皱缩恢复工艺参数优化研究. 林产工业. 2022(10): 19-22 .
    5. 赵喜龙. 人工林杨树木材皱缩恢复工艺与性能研究. 内蒙古农业大学学报(自然科学版). 2021(02): 59-62 .
    6. 杜洪双,唐朝发. 热压干燥对刨切单板背部裂隙的影响. 林产工业. 2020(07): 6-8+23 .
    7. 周永东,侯俊峰. 热压干燥中高含水率杨木锯材内水分状态及迁移机制. 林业科学. 2020(09): 104-111 .

    Other cited types(8)

Catalog

    Article views (5268) PDF downloads (94) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return