Citation: | Gao Shumin, Yang Muhan, Zhu Yuanyuan, Zhou Yan. Role of CMLs in regulating the competition of plant pollen pollination[J]. Journal of Beijing Forestry University, 2019, 41(3): 143-150. DOI: 10.13332/j.1000-1522.20180375 |
[1] |
DeFalco T A, Bender K W, Snedden W A. Breaking the code: Ca2+ sensors in plant signaling[J]. Biochemical Journal, 2010, 425(1): 27−40. doi: 10.1042/BJ20091147
|
[2] |
Bender K W, Snedden W A. Calmodulin-related proteins step out from the shadow of their namesake[J]. Plant Physiology, 2013, 163(2): 486−495. doi: 10.1104/pp.113.221069
|
[3] |
Abbas N, Maurya J P, Senapati D, et al. Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorxphogenesis[J]. The Plant Cell, 2014, 26(3): 1036−1052. doi: 10.1105/tpc.113.122515
|
[4] |
Chen C, Duanmu H Z, Zhu D, et al. Bioinformatics analysis of GmCML genes in soybean genome[J]. Soybean Science, 2015, 13(7): 427−435.
|
[5] |
Perochon A, Aldon D, Galaud J P, et al. Calmodulin and calmodulin-like proteins in plant calcium signaling[J]. Biochimie, 2011, 93(12): 2048−2053. doi: 10.1016/j.biochi.2011.07.012
|
[6] |
Song M, Xu J Q, Sun Z J, et al. Molecular cloning and expression analysis of cam-like protein genes (bocml49) from cabbage (Brassica oleracea L. var. capitata)[J]. Acta Agronomica Sinica, 2012, 38(12): 2162−2169.
|
[7] |
La V V, Trande M, D’Onofrio M, et al. Binding of calcium and target peptide to calmodulin-like protein CML19, the centrin 2 of Arabidopsis thaliana[J]. International Journal of Biological Macromolecules, 2018, 108: 1289−1299. doi: 10.1016/j.ijbiomac.2017.11.044
|
[8] |
Zeng H Q, Zhang Y X, Zhang X J, et al. Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling[J]. Frontiers in Plant Science, 2017, 8: 877. doi: 10.3389/fpls.2017.00877
|
[9] |
Mccormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist, 2003, 159(3): 585−598. doi: 10.1046/j.1469-8137.2003.00845.x
|
[10] |
Ogunrinde A, Munro K, Davidson A, et al. Arabidopsis calmodulin-like proteins, CML15 and CML16 possess biochemical properties distinct from calmodulin and show non-overlapping tissue expression patterns[J]. Frontiers in Plant Science, 2017, 8: 2175. doi: 10.3389/fpls.2017.02175
|
[11] |
Finn B E, Evenäs J, Drakenberg T, et al. Calcium-induced structural changes and domain autonomy in calmodulin[J]. Nat Struct Biol, 1995, 2(9): 777−783. doi: 10.1038/nsb0995-777
|
[12] |
Ikura M, Tanaka T, Zhang Q M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin[J]. Nature Structural Biology, 1995, 2(9): 758−767. doi: 10.1038/nsb0995-758
|
[13] |
Chigri F, Flosdorff S, Pilz S, et al. The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively[J]. Plant Molecular Biology, 2012, 78(3): 211−222. doi: 10.1007/s11103-011-9856-z
|
[14] |
Yang T B, Poovaiah B W. Calcium/calmodulin-mediated signal network in plants[J]. Trends in Plant Science, 2003, 8(10): 505−512. doi: 10.1016/j.tplants.2003.09.004
|
[15] |
Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. Bmc Plant Biology, 2007, 7(1): 4−10. doi: 10.1186/1471-2229-7-4
|
[16] |
Gong M, Yang Z H, Cao Z X. Involvement of calmodulin in pollen germination and pollen tube growth[J]. Acta Phytophisiologica Sinica, 1994(3): 240−248.
|
[17] |
Ma L G, Fan Q S, Yu Z Q, et al. Does aluminum inhibit pollen germination via extracellular calmodulin?[J]. Plant & Cell Physiology, 2000, 41(3): 372−376.
|
[18] |
Vanderbeld B, Snedden W A. Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39[J]. Plant Molecular Biology, 2007, 64(6): 683−697. doi: 10.1007/s11103-007-9189-0
|
[19] |
李娜. 拟南芥钙调素类似蛋白CML24调控铝抑制根伸长的机制研究[D]. 济南: 山东大学, 2015.
Li N. Calmodulin like protein (CML24) medicates Al-induced root growth inhibition of Arabidopsis[D]. Jinan: Shangdong University, 2015.
|
[20] |
Zhu X Y, Robe E, Jomat L, et al. CML8, an Arabidopsis calmodulin-like protein, plays a role in pseudomonas syringae plant immunity[J]. Plant & Cell Physiology, 2017, 58(2): 307−319.
|
[21] |
Aumnart C, Kampon L, Srivilai P, et al. Expression analysis of calmodulin and calmodulin-like genes from rice, Oryza sativa L.[J]. Bmc Research Notes, 2012, 5(1): 625−625. doi: 10.1186/1756-0500-5-625
|
[22] |
Wang S S, Diao W Z, Yang X, et al. Arabidopsis thaliana CML25 mediates the Ca2+ regulation of K+ transmembrane trafficking during pollen germination and tube elongation[J]. Plant Cell & Environment, 2015, 38(11): 2372−2386.
|
[23] |
Yang X, Wang S S, Wang M, et al. Arabidopsis thaliana, calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+, concentration[J]. Plant Molecular Biology, 2014, 86(3): 225−236. doi: 10.1007/s11103-014-0220-y
|
[24] |
Lin W D, Liao Y Y, Yang T J, et al. Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling[J]. Plant Signaling & Behavior, 2011, 155(5): 1383−1402.
|
[25] |
Bender K W, Rosenbaum D M, Vanderbeld B, et al. The Arabidopsis calmodulin-like protein, CML39, functions during early seedling establishment[J]. Plant Journal, 2013, 76(4): 634−647. doi: 10.1111/tpj.2013.76.issue-4
|
[26] |
Magnan F, Ranty B M, Sotta B, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. Plant Journal, 2010, 56(4): 575−589.
|
[27] |
Azimzadeh J, Nacry P, Christodoulidou A, et al. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin[J]. The Plant Cell, 2008, 20(8): 2146−2159. doi: 10.1105/tpc.107.056812
|
[28] |
Dobney S, Chiasson D, Lam P, et al. The calmodulin-related calcium sensor cml42 plays a role in trichome branching[J]. Journal of Biological Chemistry, 2009, 284(46): 31647−31657. doi: 10.1074/jbc.M109.056770
|
[29] |
Pannell J R, Labouche A M. The incidence and selection of multiple mating in plants[J]. Philosophical Transactions of the Royal Society of London, 2013, 368(1613): 20120051. doi: 10.1098/rstb.2012.0051
|
[30] |
Marshall D L, Ellstrand N C. Proximal causes of multiple paternity in wild radish, Raphanus sativus[J]. American Naturalist, 1985, 126(5): 596−605. doi: 10.1086/284441
|
[31] |
Burkhardt A, Internicola A, Bernasconi G. Effects of pollination timing on seed paternity and seed mass in Silene latifolia (Caryophyllaceae)[J]. Annals of Botany, 2009, 104(4): 767−773. doi: 10.1093/aob/mcp154
|
[32] |
Snow A A, Spira T P. Pollen vigour and the potential for sexual selection in plants[J]. Nature, 1991, 352(6338): 796−797. doi: 10.1038/352796a0
|
[33] |
Pasonen H L, Pulkkinen P, Kapyla M, et al. Pollen-tube growth rate and seed-siring success among Betula pendula clones[J]. New Phytologist, 2010, 143(2): 243−251.
|
[34] |
Jolivet C, Bernasconi G. Within/between population crosses reveal genetic basis for siring success in Silene latifolia, (Caryophyllaceae)[J]. Journal of Evolutionary Biology, 2007, 20(4): 1361−1374. doi: 10.1111/jeb.2007.20.issue-4
|
[35] |
Mccallum B, Chang S M. Pollen competition in style: effects of pollen size on siring success in the hermaphroditic common morning glory, ipomoea purpurea[J]. American Journal of Botany, 2016, 103(3): 460. doi: 10.3732/ajb.1500211
|
[36] |
赖杭桂. 木薯2n配子途径诱导多倍体的研究[D]. 海口: 海南大学, 2014.
Lai H G. Research on induction of cassava polyploid through 2n gametes[D]. Haikou: Hainan University, 2014.
|
[37] |
Kang X Y, Zhu Z T. A study on the 2n pollen vitality and germinant characteristics of white populars[J]. Acta Botanica Yunnanica, 1997, 19(4): 402−406.
|
[38] |
Vanbreukelen E W M, 董延瑜. 快速测定活体马铃薯花柱上2X和X花粉间的竞争[J]. 园艺与种苗, 1984(3):26−27.
Vanbreukelen E W M, Dong Y Y. Rapid determination of competition between 2X and X pollen on living potato style[J]. Horticulture & Seed, 1984(3): 26−27.
|
[39] |
Qu D Y, Zhu D W, Ramanna M S, et al. A comparison of progeny from diallel crosses of diploid potato with regard to the frequencies of 2n-pollen grains[J]. Euphytica, 1995, 92(3): 313−320. doi: 10.1007/BF00037114
|
[40] |
Liu X. Investigation of ploidy level and embryogenesis of progeny from crosses of tetraploid with diploid in Chinese cabbage[J]. British Journal of Haematology, 1996, 27(1): 153−161.
|
[41] |
Wang Y, Zhang W Z, Song L F, et al. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1201−1211. doi: 10.1104/pp.108.126375
|
[42] |
Zhou L, Ying F U, Yang Z. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes[J]. Journal of Integrative, 2009, 51(8): 751−761.
|
[43] |
Bender K W, Dobney S, Ogunrinde A, et al. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2+ sensor in Arabidopsis[J]. Biochemical Journal, 2014, 457(1): 127−136. doi: 10.1042/BJ20131080
|
[44] |
Lenartowska M, Rodríguez-García M I, Bednarska E. Calmodulin and calmodulin-like protein are involved in pollen-pistil interaction: immunocytochemical studies on petunia hybrida hort[J]. Acta Biologica Cracoviensia, 2001, 43(2): 117−123.
|
[45] |
Sun Y, Sun D. Signal transduction in pollen germination and tube growth[J]. Acta Botanica Sinica, 2001, 43(12): 1211−1217.
|
[46] |
Staiger C J, Poulter N S, Henty J L, et al. Regulation of actindynamics by actin-binding proteins in pollen[J]. Journal of Experimental Botany, 2010, 61(7): 1969−1986. doi: 10.1093/jxb/erq012
|
[47] |
Zhang Y, Mccormick S. The regulation of vesicle trafficking by small gtpases and phospholipids during pollen tube growth[J]. Sexual Plant Reproduction, 2010, 23(2): 87−93. doi: 10.1007/s00497-009-0118-z
|
[48] |
Luis Cárdenas, Lovywheeler A, Kunkel J G, et al. Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization[J]. Plant Physiology, 2008, 146(4): 1611−1621. doi: 10.1104/pp.107.113035
|
[49] |
Dodd A N, Kudla J, Sanders D. The language of calcium signaling[J]. Annual Review of Plant Biology, 2010, 61(1): 593−620. doi: 10.1146/annurev-arplant-070109-104628
|
[50] |
Hepler P K, Kunkel J G, Rounds C M, et al. Calcium entry into pollen tubes[J]. Trends in Plant Science, 2012, 17(1): 32−38. doi: 10.1016/j.tplants.2011.10.007
|
[51] |
Franklintong V E, Drobak B K, Allan A C, et al. Growth of pollen tubes of papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate[J]. Plant Cell, 1996, 8(8): 1305−1321. doi: 10.1105/tpc.8.8.1305
|
[52] |
Magnan F, Ranty B M, Sotta B, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. Plant Journal, 2010, 56(4): 575−589.
|
[53] |
Li Y Q, Zhang H Q, Pierson E S, et al. Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of lilium longiflorum pollen tubes[J]. Planta, 1996, 200(1): 41−49.
|
[54] |
Mouline K, Véry A A, Gaymard F, et al. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis[J]. Genes Dev, 2002, 16(3): 339−350. doi: 10.1101/gad.213902
|
[55] |
Waters B M. Moving magnesium in plant cells[J]. New Phytologist, 2011, 190(3): 510−513. doi: 10.1111/nph.2011.190.issue-3
|
[56] |
Ohki S, Ikura M, Zhang M. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin[J]. Biochemistry, 1997, 36(14): 4309−4316. doi: 10.1021/bi962759m
|
[57] |
Malmendal A, Linse S, Evenäs J, et al. Battle for the EF-hands: magnesium-calcium interference in calmodulin[J]. Biochemistry, 1999, 38(36): 11844−11850. doi: 10.1021/bi9909288
|
[58] |
Clapham D E. Calcium signaling[J]. Cell, 2007, 131(6): 1047−1058. doi: 10.1016/j.cell.2007.11.028
|
[59] |
Gifford J L, Walsh M P, Vogel H J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs[J]. Biochemical Journal, 2007, 405(2): 199−221. doi: 10.1042/BJ20070255
|
[60] |
Astegno A, Bonza M C, Vallone R, et al. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase Isoform ACA8 and stimulates its activity[J]. Journal of Biological Chemistry, 2017, 292(36): 15049−15061.
|
[61] |
Delk N A, Johnson K A, Chowdhury N I, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiology, 2005, 139(1): 240−253. doi: 10.1104/pp.105.062612
|
[62] |
杨雪. 拟南芥CML24调控花粉萌发及花粉管生长的功能研究[D]. 济南: 山东大学, 2014
Yang X. Functional study of CML24 in regulating pollen germination and pollen tube growth in Arabiclopsis[D]. Jinan: Shandong University, 2014.
|