• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chai Yuan, Fu Feng, Liang Shanqing. Progress of wood based metal functional composites[J]. Journal of Beijing Forestry University, 2019, 41(3): 151-160. DOI: 10.13332/j.1000-1522.20180382
Citation: Chai Yuan, Fu Feng, Liang Shanqing. Progress of wood based metal functional composites[J]. Journal of Beijing Forestry University, 2019, 41(3): 151-160. DOI: 10.13332/j.1000-1522.20180382

Progress of wood based metal functional composites

More Information
  • Received Date: November 25, 2018
  • Revised Date: December 17, 2018
  • Available Online: March 31, 2019
  • Published Date: February 28, 2019
  • In order to compensate for the inherent defects of wood and change the physical, mechanical, chemical and structural characteristics of wood, the research on the wood functional modification has never been interrupted. All the technologies, including the initial wood-plastic technology, impregnation technology, acetylation technology, heat treatment technology, compression and bending technology, bleaching and dyeing technology, as well as the application of microwave processing technology, have greatly promoted the development of wood science. With the deepening research on the basic physical and chemical properties of wood, new wood-based composite materials have also been applied, such as wood based metal functional composite, which endow the wood new applications, including electromagnetic shielding, heat conduction and electrical conductivity. According to the functional properties of wood based metal functional composites, which can be divided into three categories: electromagnetic shielding wood, metallized wood and impregnated magnetic wood. Electromagnetic shielding wood, mainly used for space with radiation, such as floor, slab and siding, is mainly prepared by electroless metal plating and gluing metal materials. Electroless metal plating is a chemical method for metallizing the surface of wood. Gluing metal is a method of combining metal material with wood by the help of adhesive. The electromagnetic shielding effectiveness of wood can be improved, but the damage of electromagnetic radiation to the human body reduced by all methods above. Metallized wood is a composite material formed by impregnating low-melting alloy into wood cell in a melting state, then cooling and solidifying. The melting metal uses a wood conduit as a transmission path to make the composite material compressive strength, hardness, thermal conductivity, electrical conductivity and resistance. The magnetic fluid was impregnated into the wood under a certain pressure to produce the impregnated magnetic wood, which can be used in magnetic recording, memory, electromagnetic conversion, shielding, protection, medical and biotechnology, separation and purification, and many other areas. At present, the research on wood based metal functional composites mainly focuses on the electroless plating of wood surface, but not penetrate into the interior of wood. The metal can be penetrated into the wood to form metallized wood, but the substrate used in the existing research has not been treated, the permeability of the metal is low. The focus of the next step is how to improve the substrate and then maximize the performance advantages of the metallized wood, as well as further promote the application range of wood based metal functional composite materials. In this paper, the research status of three different functional composite materials (electromagnetic shielding wood, metallized wood and impregnated magnetic wood) was summarized. Meanwhile, we also proposed the shortcomings of wood-based metal functional composites in the existing research, and looked forward to the application and development prospects of metallized wood in more fields.
  • [1]
    李坚. 木材科学[M]. 3版. 北京: 科学出版社, 2014.

    Li J. Wood science[M]. 3rd ed. Beijing: Science Press, 2014.
    [2]
    李坚, 高丽坤. 光控润湿性转换的抑菌性木材基银钛复合薄膜[J]. 森林与环境学报, 2015, 35(3):193−198.

    Li J, Gao L K. Photocontrolled wettability conversion properties of antibacterial Ag-Ti composite film based on wood substrate[J]. Journal of Forest and Environment, 2015, 35(3): 193−198.
    [3]
    Keplinger T, Cabane E, Chanana M, et al. A versatile strategy for grafting polymers to wood cell walls[J]. Acta Biomaterialia, 2015, 11: 256−263. doi: 10.1016/j.actbio.2014.09.016
    [4]
    Klimowicz T F. The large-scale commercialization of aluminum-matrix composites[J]. JOM, 1994, 46(11): 49−53. doi: 10.1007/BF03222634
    [5]
    Schuster D M, Skibo M D, Bruski R S, et al. The recycling and reclamation of metal-matrix composites[J]. JOM, 1993, 45(5): 26−30. doi: 10.1007/BF03223214
    [6]
    Lucchetta G, Marinello F, Bariani P F. Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding[J]. CIRP Annals, 2011, 60(1): 559−562. doi: 10.1016/j.cirp.2011.03.073
    [7]
    Bulleit W M. Reinforcement of wood materials: a review[J]. Wood and Fiber Science, 1984, 16(3): 391−397.
    [8]
    肖蔚鸿. 非金属材料表面金属化的方法[J]. 矿产保护与利用, 2004(3):28−31. doi: 10.3969/j.issn.1001-0076.2004.03.008

    Xiao W H. The metallization methods on nonmetallic material surface[J]. Conservation and Utilization of Mineral Resources, 2004(3): 28−31. doi: 10.3969/j.issn.1001-0076.2004.03.008
    [9]
    El Mahallawy N, Bakkar A, Shoeib M, et al. Electroless Ni-P coating of different magnesium alloys[J]. Surface and Coatings Technology, 2008, 202(21): 5151−5157. doi: 10.1016/j.surfcoat.2008.05.037
    [10]
    George R, Venkatachalam S, Ninan K N. Electrochemical impedance measurements on Ni-P coated magnesium alloy, chromated magnesium alloy, and anodised aluminium alloys in aqueous salt solutions[J]. British Corrosion Journal, 2002, 37(1): 37−42. doi: 10.1179/000705902225002330
    [11]
    Nagasawa C, Umehara H, Koshizaki N, et al. Effects of wood species on electroconductivity and electromagnetic shielding properties of electrolessly plated sliced veneer with nickel[J]. Journal of the Japan Wood Research Society, 1994, 40(10): 1092−1099.
    [12]
    Nagasawa C, Kumagai Y, Urabe K, et al. Electromagnetic shielding particleboard with nickel-plated wood particles[J]. Journal of Porous Materials, 1999, 6(3): 247−254. doi: 10.1023/A:1009692232398
    [13]
    徐高祥. 金属木材复合材料的制备及其性能的研究[D]. 合肥: 安徽农业大学, 2013.

    Xu G X. Study on the preparation and properties of metal nickel and copper wood composites[D]. Hefei: Anhui Agricultural University, 2013.
    [14]
    王立娟, 李坚, 刘一星. 化学镀法制备电磁屏蔽木材-Ni-P复合材料研究[J]. 材料科学与工艺, 2006, 14(3):296−299, 304. doi: 10.3969/j.issn.1005-0299.2006.03.021

    Wang L J, Li J, Liu Y X. Study on electromagnetic shielding wood Ni-P composite prepared by electroless nickel plating[J]. Materials Science and Technology, 2006, 14(3): 296−299, 304. doi: 10.3969/j.issn.1005-0299.2006.03.021
    [15]
    Li J, Wang L J, Liu H B. A new process for preparing conducting wood veneers by electroless nickel plating[J]. Surface and Coatings Technology, 2010, 204(8): 1200−1205. doi: 10.1016/j.surfcoat.2009.10.032
    [16]
    姚晓林, 徐高翔, 刘盛全. 金属铜木材复合材料的制备及其力学性能研究[J]. 化工新型材料, 2013, 41(7):139−141, 144. doi: 10.3969/j.issn.1006-3536.2013.07.047

    Yao X L, Xu G X, Liu S Q. Research of preparation and mechanical properties of copper-wood composites[J]. New Chemical Materials, 2013, 41(7): 139−141, 144. doi: 10.3969/j.issn.1006-3536.2013.07.047
    [17]
    Wang L J, Sun L L, Li J. Electroless copper plating on Fraxinus mandshurica veneer using glyoxylic acid as reducing agent[J]. BioResources, 2010, 6(3): 3493−3504.
    [18]
    李一, 聂俊辉, 李楠, 等. 镍覆膜碳纤维的制备与性能研究[J]. 功能材料, 2012, 43(13):1688−1691, 1695. doi: 10.3969/j.issn.1001-9731.2012.13.007

    Li Y, Nie J H, Li N, et al. The preparation and properties of nickel-coated carbon fiber by MOCVD process[J]. Journal of Functional Materials, 2012, 43(13): 1688−1691, 1695. doi: 10.3969/j.issn.1001-9731.2012.13.007
    [19]
    孔祥依, 乔妙杰, 张存瑞, 等. 碳纤维表面化学镀电磁屏蔽复合材料的研究进展[J]. 材料导报, 2010, 24(增刊2):356−359.

    Kong X Y, Qiao M J, Zhang C R, et al. Research progress on the metallic carbon fiber reinforced electromagnetic shielding composite[J]. Materials Review, 2010, 24(Suppl.2): 356−359.
    [20]
    潘艳飞. 木质纤维素基磁性中空复合材料的制备及其性能研究[D]. 呼和浩特: 内蒙古农业大学, 2016.

    Pan Y F. Preparation and performance of magnetic hollow composite materials based wooden cellulose fibers[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
    [21]
    Li R, He M, Li T, et al. Preparation and properties of cellulose/silver nanocomposite fibers[J]. Carbohydrate Polymers, 2015, 115: 269−275. doi: 10.1016/j.carbpol.2014.08.046
    [22]
    Cai J, Kimura S, Wada M, et al. Nanoporous cellulose as metal nanoparticles support[J]. Biomacromolecules, 2009, 10(1): 87−94. doi: 10.1021/bm800919e
    [23]
    Lambuth A L, Brown C. Electrically conductive lignocellulose particle board: 4906484[P]. 1990-03-06.
    [24]
    Cheng K B, Ramakrishna S, Lee K C. Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(10): 1039−1045. doi: 10.1016/S1359-835X(00)00071-3
    [25]
    Kato S, Kurosu H, Murayama T. Production of multilayered wood-based composite materials and electromagnetic shielding properties[J]. Forestry Research Institute Research Report, 1991, 360: 171−184.
    [26]
    Lu K Y, Fu F, Fu Y J, et al. Study to wood electromagnetic shielding composites laminated with aluminum plates[J]. Advanced Materials Research, 2011, 280: 159−164. doi: 10.4028/www.scientific.net/AMR.280
    [27]
    Su C W, Yuan Q P, Gan W X, et al. The research on wood fiber/stainless steel net electromagnetic shielding composite board[J]. Key Engineering Materials, 2013, 525−526: 437−440.
    [28]
    Park J Y, Seo S. Performances improvement of medium density fiberboard by combining with various nonwood materials[J]. Research Reports of the Forestry Research Institute (Korea Republic), 1993, 47: 35−48.
    [29]
    思南. 介绍几种木材与无机非金属复合材料[J]. 中国人造板, 2003(3):20−22. doi: 10.3969/j.issn.1673-5064.2003.03.007

    Si N. Several kinds of wood and inorganic nonmetallic composite materials are introduced[J]. China Wood-Based Panels, 2003(3): 20−22. doi: 10.3969/j.issn.1673-5064.2003.03.007
    [30]
    李坚, 李桂玲. 金属化木材[J]. 中国木材, 1994(6):19−20.

    Li J, Li G L. Metallized wood[J]. Zhongguo Mucai, 1994(6): 19−20.
    [31]
    李坚. 走向21世纪的木质复合材料[J]. 世界林业研究, 1995, 8(3):34−40.

    Li J. Wood-based composite material towards 21th century[J]. World Forestry Research, 1995, 8(3): 34−40.
    [32]
    卢灿辉, 陈晓. 利用木材介孔结构制备新型复合材料研究进展[J]. 高分子材料科学与工程, 2003, 19(6):32−36. doi: 10.3321/j.issn:1000-7555.2003.06.008

    Lu C H, Chen X. Advance in novel wood composites based on the mesoporous structures of wood[J]. Polymer Materials Science and Engineering, 2003, 19(6): 32−36. doi: 10.3321/j.issn:1000-7555.2003.06.008
    [33]
    周婷婷. 木材金属基处理及涂饰性能的研究[D]. 南京: 南京林业大学, 2011.

    Zhou T T. Study on the metal-base treatment and finishing properties of wood[D]. Nanjing: Nanjing Forestry University, 2011.
    [34]
    谢贤清, 张获, 范同祥, 等. 具有网络互穿结构的木质陶瓷复合材料[J]. 材料研究学报, 2002, 16(3):259−262. doi: 10.3321/j.issn:1005-3093.2002.03.008

    Xie X Q, Zhang H, Fan T X, et al. Woodceramics composites with interpenetrating network[J]. Chinese Journal of Materials Research, 2002, 16(3): 259−262. doi: 10.3321/j.issn:1005-3093.2002.03.008
    [35]
    Kang S G, Park K S, Lee H, et al. Manufacturing and properties of Bi-Sn impregnated wood composites of Juglans nigra[J]. Journal of the Korea Furniture Society, 2011, 22(1): 54−62.
    [36]
    Park K S, Lee H H, Kang S G. Physico-mechanical properties and optimum manufacturing conditions of Bi-Sn metal alloy impregnated wood composites[J]. Journal of the Korean Wood Science and Technology, 2014, 42(6): 691−699. doi: 10.5658/WOOD.2014.42.6.691
    [37]
    Park K S, Lee H H. Properties and manufacturing of low melting alloy impregnated wood composites for using domestic thinned logs of Juglans mandshurica[J]. Journal of Agricultural Science, 2010, 37(3): 457−464.
    [38]
    Park S Y, Kim H M, Kim S Y, et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers[J]. Carbon, 2012, 50(13): 4830−4838. doi: 10.1016/j.carbon.2012.06.009
    [39]
    Amesoder S, Ehrenstein G W. Thermal conductive polymers[J]. Zeitschrift fur Metallkunde, 2003, 94(5): 606−609. doi: 10.3139/146.030606
    [40]
    Wan J Y, Song J W, Yang Z, et al. Highly anisotropic conductors[J]. Advanced Materials, 2017, 29(41): 1703331. doi: 10.1002/adma.v29.41
    [41]
    陈京环, 钱学仁. 磁性木材和磁性木质纤维的制备及应用[J]. 林产工业, 2006, 33(5):8−11. doi: 10.3969/j.issn.1001-5299.2006.05.003

    Chen J H, Qian X R. Preparation and application of magnetic wood and magnetic woody fibers[J]. China Forest Products Industry, 2006, 33(5): 8−11. doi: 10.3969/j.issn.1001-5299.2006.05.003
    [42]
    Oka H, Hojo A, Osada H, et al. Manufacturing methods and magnetic characteristics of magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2004, 272−276: 2332−2334. doi: 10.1016/j.jmmm.2003.12.1214
    [43]
    Oka H, Hojo A, Seki K, et al. Wood construction and magnetic characteristics of impregnated type magnetic wood[J]. Journal of Magnetism and Magnetic Materials, 2002, 239(1/3): 617−619.
    [44]
    Merk V, Chanana M, Gierlinger N, et al. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9760−9767.
    [45]
    Mancosky D G, Lucia L A. A novel and efficient approach for imparting magnetic susceptibility to lignocellulosic fibers[J]. Carbohydrate Polymers, 2005, 59(4): 517−520. doi: 10.1016/j.carbpol.2004.11.026
    [46]
    林志远, 吕建雄. 几种木材干燥方法机理及其对木材浸注性的影响[J]. 世界林业研究, 2004, 17(1):25−30. doi: 10.3969/j.issn.1001-4241.2004.01.006

    Lin Z Y, Lü J X. Mechanism of several different drying methods and their effects on liquid impregnation or permeability of wood[J]. World Forestry Research, 2004, 17(1): 25−30. doi: 10.3969/j.issn.1001-4241.2004.01.006
    [47]
    Torgovnikov G, Vinden P. High-intensity microwave wood modification for increasing permeability[J]. Forest Products Journal, 2009, 59(4): 84−92.
    [48]
    Torgovnikov G, Vinden P. Microwave wood modification technology and its applications[J]. Forest Products Journal, 2010, 60(2): 173−182. doi: 10.13073/0015-7473-60.2.173
    [49]
    周永东, 傅峰, 李贤军, 等. 微波处理对桉木应力及微观构造的影响[J]. 北京林业大学学报, 2009, 31(2):147−150.

    Zhou Y D, Fu F, Li X J, et al. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 147−150.
    [50]
    Vinden P, Torgovnikov G. 木材微波改性技术[J]. 木材工业, 2001, 15(5):35−36. doi: 10.3969/j.issn.1001-8654.2001.05.012

    Vinden P, Torgovnikov G. Technique of wood microwave modification[J]. China Wood Industry, 2001, 15(5): 35−36. doi: 10.3969/j.issn.1001-8654.2001.05.012
    [51]
    林兰英, 何盛, 傅峰, 等. 基于图像处理的微波处理材裂纹评价[J]. 林业科学, 2014, 50(4):84−89.

    Lin L Y, He S, Fu F, et al. Evaluation of the cracks in microwave-treated lumbers based on image processing[J]. Scientia Silvae Sinicae, 2014, 50(4): 84−89.
    [52]
    李贤军, 傅峰, 周永东. 高强度微波预处理对桉木渗透性的影响规律[J]. 中南林业科技大学学报, 2011, 31(12):145−149. doi: 10.3969/j.issn.1673-923X.2011.12.026

    Li X J, Fu F, Zhou Y D. Effect of microwave pretreatment on permeability of Eucalyptus wood[J]. Journal of Central South University of Forestry & Technology, 2011, 31(12): 145−149. doi: 10.3969/j.issn.1673-923X.2011.12.026
    [53]
    何盛, 傅峰, 林兰英, 等. 微波处理技术在木材功能化改性研究中的应用[J]. 世界林业研究, 2014, 27(1):62−67.

    He S, Fu F, Lin L Y, et al. Research progress in functional modification of microwave treated wood[J]. World Forestry Research, 2014, 27(1): 62−67.
    [54]
    何盛, 于辉, 吴再兴, 等. 微波处理对樟子松木材液体浸注性能影响[J]. 微波学报, 2016, 32(6):90−96.

    He S, Yu H, Wu Z X, et al. Effect of microwave treatment on liquid impregnate property of Pinus sylvestris L. var lumber[J]. Journal of Microwaves, 2016, 32(6): 90−96.
    [55]
    Vinden P, Torgovnikov G, Hann J. Microwave modification of Radiata pine railway sleepers for preservative treatment[J]. European Journal of Wood and Wood Products, 2011, 69(2): 271−279. doi: 10.1007/s00107-010-0428-8
    [56]
    司琼, 董发勤. 电磁屏蔽混凝土[J]. 材料导报, 2005, 19(2):57−59, 62. doi: 10.3321/j.issn:1005-023X.2005.02.017

    Si Q, Dong F Q. Electromagnetic shielding concrete[J]. Materials Review, 2005, 19(2): 57−59, 62. doi: 10.3321/j.issn:1005-023X.2005.02.017
    [57]
    Oka H, Kataoka Y, Osada H, et al. Experimental study on electromagnetic wave absorbing control of coating-type magnetic wood using a grooving process[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): e1028−e1029. doi: 10.1016/j.jmmm.2006.11.073
    [58]
    扈花芝. 低温地板辐射采暖系统分析[J]. 建筑工人, 2005(11):34−35. doi: 10.3969/j.issn.1002-3232.2005.11.031

    Hu H Z. Analysis of low temperature radiant floor heating system[J]. Builders’ Monthly, 2005(11): 34−35. doi: 10.3969/j.issn.1002-3232.2005.11.031
    [59]
    Seo J, Jeon J, Lee J H, et al. Thermal performance analysis according to wood flooring structure for energy conservation in radiant floor heating systems[J]. Energy and Buildings, 2011, 43(8): 2039−2042. doi: 10.1016/j.enbuild.2011.04.019
    [60]
    施正宇, 金海明, 叶彬洁,等 . 金属木材混搭的新中式休闲座椅[J]. 大众科技, 2016(12):120−121.

    Shi Z Y, Jin H M, Ye B J, et al. A new Chinese style leisure chair based on metal and wood[J]. Popular Science & Technology, 2016(12): 120−121.
    [61]
    Sugiyama S, Kiuchi M, Yanagimoto J. Application of semisolid joining-part 4 glass/metal, plastic/metal, or wood/metal joining[J]. Journal of Materials Processing Technology, 2008, 201(1/3): 623−628.
    [62]
    Onoda K, Aizawa K, Chuang P, et al. Composite metal wood: 20040192468[P]. 2004-09-30.
    [63]
    Martin A, Le Neillon V, Jouade A, et al. Mechanically reconfigurable radiation pattern slot antenna array feeded by bended sectoral horn and metalized wood splitter[J]. Progress in Electromagnetics Research C, 2017, 72: 159−165. doi: 10.2528/PIERC17010502
    [64]
    王悦桐. 木材金属复合管的开发利用[J]. 林业勘查设计, 2001(3):52−54.

    Wang Y T. Development and utilization of wood metal composite pipes[J]. Forest Investigation Design, 2001(3): 52−54.
    [65]
    卢克阳, 傅峰. 电磁屏蔽木基复合材料的研究现状和发展趋势[J]. 木材工业, 2007, 21(3):1−3, 7. doi: 10.3969/j.issn.1001-8654.2007.03.001

    Lu K Y, Fu F. Review of research on electromagnetic shielding wood composites[J]. China Wood Industry, 2007, 21(3): 1−3, 7. doi: 10.3969/j.issn.1001-8654.2007.03.001
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (4281) PDF downloads (94) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return