• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. DOI: 10.13332/j.1000-1522.20190017
Citation: Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. DOI: 10.13332/j.1000-1522.20190017

Study on the relationship between forest structure and productivity of temperate forests in Northeast China

More Information
  • Received Date: January 14, 2019
  • Revised Date: March 14, 2019
  • Available Online: April 30, 2019
  • Published Date: April 30, 2019
  • ObjectiveThe objectives of this paper is to study the relationship between forest structure and forest productivity and its driving mechanism, so as to improve the forest structure, optimize forest ecosystem function, and improve forest productivity.
    MethodThen temperate forests in the Northeastern was taken as the research object and a network of 327 survey plots was established on the seven main mountain ranges distributed in temperate forests, with a total area of 32.7 hm2. Based on the field survey data of 26 348 trees, the structural equation model (SEM) was used to study the path and strength of forest productivity based on species diversity and structure diversity under large-scale conditions. Besides, the relationship between climatic factors and forest productivity and their driving mechanism were also analyzed.
    Results(1) Both species diversity and structure diversity showed significant positive correlations with forest productivity, and these two factors were strongly correlated. (2) Temperature and precipitation have no direct impact on productivity, but instead act on productivity by adjusting structure diversity and species diversity. (3) Similarly, dominant height of stand put impacts on productivity by adjusting forest structure and showed stronger influence than temperature and precipitation.
    ConclusionStructure diversity and species diversity are direct driving factors for forest productivity in temperate forests in Northeast China, while climatic factors and dominant height of stand affect forest productivity by influencing forest structure. The results provide a theoretical basis for the sustainable management and management of temperate forests in Northeast China, showing important practical significance.
  • [1]
    Piao S, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 2013, 19(7): 2117−2132. doi: 10.1111/gcb.12187
    [2]
    Ruiz-Benito P, Madrigal-Gonzalez J, Ratcliffe S, et al. Stand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomes[J]. Ecosystems, 2014, 17(8): 1439−1454. doi: 10.1007/s10021-014-9806-0
    [3]
    Spathelf P, Van Der Maaten E, Van Der Maaten-Theunissen M, et al. Climate change impacts in European forests: the expert views of local observers[J]. Annals of Forest Science, 2014, 71(2): 131−137. doi: 10.1007/s13595-013-0280-1
    [4]
    Charru M, Seynave I, Hervé J C, et al. Spatial patterns of historical growth changes in Norway spruce across western European mountains and the key effect of climate warming[J]. Trees, 2014, 28(1): 205−221. doi: 10.1007/s00468-013-0943-4
    [5]
    Bosela M, Štefančík I, Petráš R, et al. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity[J]. Agricultural and Forest Meteorology, 2016, 222: 21−31. doi: 10.1016/j.agrformet.2016.03.005
    [6]
    Burkhart H E, Tomé M. Modeling forest trees and stands[M]. Berlin: Springer Science & Business Media, 2012.
    [7]
    Ratcliffe S, Liebergesell M, Ruiz-Benito P, et al. Modes of functional biodiversity control on tree productivity across the European continent[J]. Global Ecology and Biogeography, 2016, 25(3): 251−262. doi: 10.1111/geb.12406
    [8]
    Potter K M, Woodall C W. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests[J]. Forest Ecology and Management, 2014, 321: 117−129. doi: 10.1016/j.foreco.2013.06.026
    [9]
    Wu X, Wang X, Tang Z, et al. The relationship between species richness and biomass changes from boreal to subtropical forests in China[J]. Ecography, 2015, 38(6): 602−613. doi: 10.1111/ecog.2015.v38.i6
    [10]
    Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests[J/OL]. Science, 2016, 354: aaf8957 [2018−12−23]. http://doi.org/10.1126/science.aaf8957.
    [11]
    Zhang Y, Chen H Y H, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J]. Functional Ecology, 2017, 31(2): 419−426. doi: 10.1111/fec.2017.31.issue-2
    [12]
    Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass[J]. Journal of Ecology, 2015, 103(5): 1245−1252. doi: 10.1111/1365-2745.12425
    [13]
    Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
    [14]
    Forrester D I. The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process[J]. Forest Ecology and Management, 2014, 312: 282−292. doi: 10.1016/j.foreco.2013.10.003
    [15]
    Jucker T, Avăcăriţei D, Bărnoaiea I, et al. Climate modulates the effects of tree diversity on forest productivity[J]. Journal of Ecology, 2016, 104(2): 388−398. doi: 10.1111/1365-2745.12522
    [16]
    Dănescu A, Albrecht A T, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany[J]. Oecologia, 2016, 182(2): 319−333. doi: 10.1007/s00442-016-3623-4
    [17]
    谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149−1156.

    Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broadleaved Korean pine forest in Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1149−1156.
    [18]
    王春晶. 东北森林植物多样性分析及保护建议[D]. 哈尔滨: 东北林业大学, 2014.

    Wang C J. The analysis and conservation suggestion for plant diversity of northeastern China[D]. Harbin: Northeast Forestry University, 2014.
    [19]
    刘琪璟, 孟盛旺, 周华, 等. 中国立木材积表[M]. 北京: 中国林业出版社, 2017.

    Liu Q J, Meng S W, Zhou H, et al. Chinese timber table[M]. Beijing: China Forestry Publishing House, 2017.
    [20]
    吉林省立木材积、出材率表[S]. 吉林: 吉林省林业厅, 2015.

    Jilin Province standing volume, out-put table[S]. Jilin: Jilin Provincial Forestry Department, 2015.
    [21]
    黑龙江省立木材积表[S]. 哈尔滨: 黑龙江省营林局, 1981.

    Heilongjiang provincial standing volume table[S]. Harbin: Heilongjiang Forestry Administration, 1981.
    [22]
    Clutter J L. Compatible growth and yield models for loblolly pine[J]. Forest Science, 1963, 9(3): 354−371.
    [23]
    Skovsgaard J P, Vanclay J K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands[J]. Forestry: an International Journal of Forest Research, 2008, 81(1): 13−31. doi: 10.1093/forestry/cpm041
    [24]
    Fox J. Applied regression analysis and generalized linear models[M]. London: Sage Publications, 2015.
    [25]
    Fahey R T, Fotis A T, Woods K D. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests[J]. Ecological Applications, 2015, 25(3): 834−847. doi: 10.1890/14-1012.1
    [26]
    Wright I J, Reich P B, Atkin O K, et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites[J]. New Phytologist, 2006, 169(2): 309−319. doi: 10.1111/nph.2006.169.issue-2
    [27]
    Schaphoff S, Reyer C P O, Schepaschenko D, et al. Tamm Review: observed and projected climate change impacts on Russia ’s forests and its carbon balance[J]. Forest Ecology and Management, 2016, 361: 432−444. doi: 10.1016/j.foreco.2015.11.043
    [28]
    Forrester D I, Ammer C, Annighöfer P J, et al. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe[J]. Journal of Ecology, 2018, 106(2): 746−760. doi: 10.1111/1365-2745.12803
    [29]
    郭艳荣, 吴保国, 刘洋, 等. 立地质量评价研究进展[J]. 世界林业研究, 2012, 25(5):47−52.

    Guo Y R, Wu B G, Liu Y, et al. Research progress of site quality evaluation[J]. World Forestry Research, 2012, 25(5): 47−52.
    [30]
    唐诚, 王春胜, 曾杰, 等. 立地指数−环境因子模型评价森林立地生产力研究进展[J]. 世界林业研究, 2018, 31(4):48−53.

    Tang C, Wang C S, Zeng J, et al. Advances in forest site productivity evaluation with relationship model of site index and environmental factors[J]. World Forestry Research, 2018, 31(4): 48−53.
    [31]
    Gonzalez-Benecke C A, Teskey R O, Dinon-Aldridge H, et al. Pinus taeda forest growth predictions in the 21st century vary with site mean annual temperature and site quality[J]. Global Change Biology, 2017, 23(11): 4689−4705. doi: 10.1111/gcb.2017.23.issue-11
    [32]
    Palahí M, Pukkala T, Kasimiadis D, et al. Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece[J]. Annals of Forest Science, 2008, 65(5): 501.
  • Related Articles

    [1]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Yu Haiou, Zheng Jun, Zhang Tianxiang. DBH class structure and arbor biomass of Juglans mandshurica secondary forest[J]. Journal of Beijing Forestry University, 2022, 44(1): 29-37. DOI: 10.12171/j.1000-1522.20200348
    [2]Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. DOI: 10.12171/j.1000-1522.20200065
    [3]Chen Bei-bei, Wang Kai, Ni Rui-qiang, Cheng Yan-xia. Composition and spatial pattern of tree seedlings in a coniferous and broadleaved mixed forest in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 68-75. DOI: 10.13332/j.1000-1522.20170370
    [4]SUN Yue, XIA Fu-cai, HE Huai-jiang, LIU Bao-dong, WANG Ge-rong, LI Liang. Community structure features of the larch-birch secondary forest on the northeastern slope of Changbai Mountain, Northeast China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 28-38. DOI: 10.13332/j.1000-1522.20160088
    [5]WANG Xin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, WANG Guo-hang, DENG Hong-ping. Community structure and population regeneration of an endangered plant, Thuja sutchuenensis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 28-37. DOI: 10.13332/j.1000-1522.20160028
    [6]L&#xDC, Xun, YANG Shuang-bao, LIU Wen-zhen, GUO Xiao-long, LI An-min, YUAN Yi-chao. Analysis of spatial structure characteristics based on diameter class of trees in primeval Quercus aliena var. acuteserrata community in the forest area of Xiaolong Mountain, Gansu Province.[J]. Journal of Beijing Forestry University, 2015, 37(5): 11-18. DOI: 10.13332/j.1000-1522.20140238
    [7]LUO Zong-shi, XIANG Cheng-hua, ZHANG Lu, XIE Da-jun, LUO Xiao-hua. Spatial distribution of fine roots and underground competition between Chinese prickly ash (Zanthoxylum bungenum) and weeds in Chinese prickly ash plantation[J]. Journal of Beijing Forestry University, 2010, 32(2): 86-91.
    [8]HAN Lu, WANG Hai-zhen, PENG Jie, LIANG Ji-ye, MA Chun-hui. Size-class structure and distribution pattern of Populus euphratica Oliv. in different habitats.[J]. Journal of Beijing Forestry University, 2010, 32(1): 7-12.
    [9]MAO Lei, , WANG Dong-mei, YANG Xiao-hui, YU Hong. Spatial patterns of young Pinus sylvestris var. mongolica saplings and their regeneration analysis in different stands of Inner Mongolia, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 71-77.
    [10]MA Yu-fei, LI Jun-qing. Population structure of Davidia involucrate in Mt.Seven-sister Nature Reserve of central China’s Hubei Province[J]. Journal of Beijing Forestry University, 2005, 27(3): 12-16.
  • Cited by

    Periodical cited type(62)

    1. 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型. 林业科学. 2025(01): 57-69 .
    2. 衣娜娜,毕力格,史金丽,蔡敏,许志丽,郑凤杰,丽娜. 内蒙古大兴安岭飞机冷云增雨潜势预报模型. 干旱区研究. 2025(03): 409-419 .
    3. 王伟武,伏添乐,陈欢. 基于PLUS-InVEST模型的长三角城市群碳储量时空演变与预测. 环境科学. 2025(04): 1937-1950 .
    4. 徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
    5. 张圆圆,龙勤. 云南省森林净碳储量估算及影响因素分析——基于碳源和碳汇双重角度. 绿色科技. 2024(01): 227-231 .
    6. 汪宗顺,张海鹏,岳超,杨红强,张寒. 造林增汇是实现碳中和的成本有效途径吗?——以西北地区为例. 自然资源学报. 2024(03): 731-748 .
    7. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    8. 杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
    9. 于鲁冀,张亚慧,樊雷,王莉,刘莹莹. 河南省森林固碳量与碳汇价值评估. 郑州大学学报(工学版). 2024(03): 7-13 .
    10. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    11. 李林,赵毅,温智峰,刘佳润,魏识广,周景钢,冯嘉谊. 南亚热带常绿阔叶林地上碳储量空间分布特征及其影响因素. 生态学报. 2024(11): 4687-4697 .
    12. 马振华. 基于第7至9次森林资源清查的宁夏森林碳储量动态变化特征. 陕西林业科技. 2024(03): 39-45 .
    13. 郭同方,吴水荣,张超,苏秦. 重点国有林区森林碳储量动态变化及增汇策略分析——以龙江森工为例. 江西农业大学学报. 2024(03): 582-596 .
    14. 贺晨瑞,庞丽峰,谭炳香,黄逸飞,孙学霞. 基于遥感的北京市森林地上碳储量监测. 西北林学院学报. 2024(03): 162-170+265 .
    15. Zhencan ZHENG,Liuwen ZHUANG,Guofang MIAO,Han LIU,Zhiqiang CHENG,Wenyu LI,Rong SHANG,Peng GONG,Jing Ming CHEN. Elevational distribution of forests and its spatiotemporal dynamics in subtropical China from 2000 to 2019. Science China Earth Sciences. 2024(08): 2563-2582 .
    16. 郑振灿,庄留文,缪国芳,刘涵,程志强,李纹宇,商荣,宫鹏,陈镜明. 中国亚热带地区2000~2019年森林海拔分布特征及其时空动态. 中国科学:地球科学. 2024(08): 2604-2624 .
    17. 张亮. 韶关市森林植被碳储量与碳密度动态研究. 林业与环境科学. 2024(05): 88-94 .
    18. 范彩慧,段成波,龙德增,赵润华. 保山市森林生物质碳储量分析. 绿色科技. 2024(20): 68-73 .
    19. 胡兴波,张月,胡长江,李慧波,王光鑫. 西南地区常见林木的固碳经济效益分析. 农村科学实验. 2024(23): 114-116 .
    20. 曹爱平,罗雷,王晓荣,徐立,郑晓敏. 基于湖北第五次森林资源普查数据的森林碳储量研究. 湖北林业科技. 2024(06): 1-6 .
    21. 王媛媛,刘可欣,张湘婕,王艺璇,赵俊玮,徐连杰,郭婷婷,王天意,任志彬,代新竹. 城市森林碳汇估算计量——以长春市为例. 中国城市林业. 2024(06): 116-122 .
    22. 张翔,刘洋,玉山,苏日娜,阿茹汗. 基于无人机激光雷达和多光谱数据的森林树高提取方法研究. 森林工程. 2023(01): 29-36 .
    23. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    24. 陈宏福,韦体,敏正龙,妥永华,高丹丹,蔡勇,杨具田,白日霞,郭鹏辉. 黄河上游太子山国家级自然保护区森林碳储量及碳增汇潜力研究. 西北民族大学学报(自然科学版). 2023(01): 63-70 .
    25. 朱建华,田宇,李奇,刘华妍,郭学媛,田惠玲,刘常富,肖文发. 中国森林生态系统碳汇现状与潜力. 生态学报. 2023(09): 3442-3457 .
    26. 张煜星,王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力. 林业科学. 2023(03): 54-64 .
    27. 简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学. 2023(03): 12-20 .
    28. 刘川. 利用森林资源一类清查数据计算活立木蓄积量的方法及应用研究. 山东林业科技. 2023(03): 69-72 .
    29. 冯源,王连晶. 县域尺度乔木林碳储量及碳汇特征分析——以马关县为例. 西部林业科学. 2023(03): 152-159 .
    30. 罗佩文,熊小雨,刘冰琳. 基于机器学习和生长预测的森林固碳分析和多目标规划管理策略. 科技风. 2023(19): 156-159 .
    31. 汤浩藩,季巍,周卫平,欧阳希,王华,张文晶,许彦红. 主要乔木树种碳储量与碳密度分布特征——以昆明市海口林场为例. 南方林业科学. 2023(03): 6-10+29 .
    32. 王迎辉,孙浩然,解华臻,张岩,卢振生. 小型树苗扦插机的设计. 南方农机. 2023(22): 35-37+57 .
    33. 江晓雨,刘康桢,徐帅. 基于LCA的合肥滨湖国家森林公园的环境评估. 合肥学院学报(综合版). 2023(05): 70-76 .
    34. 李放,孙红召,黄新峰,曹文昱,冯东阳,冯瑞琦. 基于河南省第九次森林资源清查的乔木林碳储量研究. 绿色科技. 2023(17): 151-157 .
    35. 陈晨,时军霞,刘光武. 河南省乔木林碳储量和碳密度研究. 安徽农业科学. 2023(22): 108-111 .
    36. 韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
    37. 朱昳橙. 海寨林场主要乔木树种碳储量和碳密度特征研究. 宁夏农林科技. 2023(12): 24-28 .
    38. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析. 资源与产业. 2022(01): 15-25 .
    39. 徐明锋,苏永新,龚益广,王锋,张少杰,何春梅. 粤西桉阔林乔木层碳密度及其影响因子研究. 林业与环境科学. 2022(01): 1-8 .
    40. 张全斌,周琼芳. “双碳”目标下中国能源CO_2减排路径研究. 中国国土资源经济. 2022(04): 22-30 .
    41. 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学. 2022(02): 32-41 .
    42. 尹海龙,张乃暄,许中旗. 冀北坝上及坝下地区华北落叶松林土壤碳储量的比较. 林业与生态科学. 2022(02): 164-168 .
    43. 刘华超,任春颖,王宗明,张柏. 大兴安岭生态功能区生态系统服务功能动态及权衡协同关系研究. 生态与农村环境学报. 2022(05): 587-598 .
    44. 胡忠宇,苏建兰. 森林植被碳储量研究综述与展望. 农业与技术. 2022(12): 58-62 .
    45. 肖水寒,张驭骁,张佳栋,周甲佳. 基于碳存储量预测的森林经营计划决策模型. 科学技术创新. 2022(23): 165-168 .
    46. Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
    47. 曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
    48. 周静,吕晓琪. 北京大兴区森林植被碳储量计算及价值分析. 绿色科技. 2022(16): 49-52 .
    49. 薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
    50. 雷海清,孙高球,郑得利. 温州市森林生态系统碳储量研究. 南京林业大学学报(自然科学版). 2022(05): 20-26 .
    51. 肖君. 福建省天然乔木林碳储量动态变化及增汇策略. 南京林业大学学报(自然科学版). 2022(05): 27-32 .
    52. 范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 . 本站查看
    53. 张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 . 本站查看
    54. 陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
    55. 荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
    56. 王飞平,张加龙. 基于碳卫星的森林碳储量估测研究综述. 世界林业研究. 2022(06): 30-35 .
    57. 侯瑞萍,陈健,夏朝宗,宋佳庚,黄翔,郑芊卉,安天宇,郝月兰. 2020年京津冀地区林地和其他生物质碳汇量研究. 林业资源管理. 2022(05): 42-52 .
    58. 郭学媛,朱建华,刘华妍,田惠玲,李春蕾,刘常富,肖文发. 林业活动对区域森林生物量碳源汇格局的影响——以南平市为例. 生态学报. 2022(23): 9548-9559 .
    59. 侯瑞萍,夏朝宗,陈健,郑芊卉,李海奎,黄金金,黄翔,邓继峰,韩旭,安天宇,郝月兰,苟丽晖. 长江经济带林地和其他生物质碳储量及碳汇量研究. 生态学报. 2022(23): 9483-9498 .
    60. 韩光荣,赵琦,邵长城. 优化施肥对樟子松幼苗生长和抗逆生理的影响. 林业调查规划. 2022(06): 49-54 .
    61. 刘丽,彭琛. 宁强县森林资源变化分析. 绿色科技. 2021(19): 97-99 .
    62. 张峰,彭祚登. 北京市森林碳储量和碳汇经济价值研究. 林业资源管理. 2021(06): 52-58 .

    Other cited types(41)

Catalog

    Article views (4651) PDF downloads (161) Cited by(103)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return