• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. DOI: 10.13332/j.1000-1522.20190017
Citation: Wu Zhaofei, Zhang Yuqiu, Zhang Zhonghui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48-55. DOI: 10.13332/j.1000-1522.20190017

Study on the relationship between forest structure and productivity of temperate forests in Northeast China

More Information
  • Received Date: January 14, 2019
  • Revised Date: March 14, 2019
  • Available Online: April 30, 2019
  • Published Date: April 30, 2019
  • ObjectiveThe objectives of this paper is to study the relationship between forest structure and forest productivity and its driving mechanism, so as to improve the forest structure, optimize forest ecosystem function, and improve forest productivity.
    MethodThen temperate forests in the Northeastern was taken as the research object and a network of 327 survey plots was established on the seven main mountain ranges distributed in temperate forests, with a total area of 32.7 hm2. Based on the field survey data of 26 348 trees, the structural equation model (SEM) was used to study the path and strength of forest productivity based on species diversity and structure diversity under large-scale conditions. Besides, the relationship between climatic factors and forest productivity and their driving mechanism were also analyzed.
    Results(1) Both species diversity and structure diversity showed significant positive correlations with forest productivity, and these two factors were strongly correlated. (2) Temperature and precipitation have no direct impact on productivity, but instead act on productivity by adjusting structure diversity and species diversity. (3) Similarly, dominant height of stand put impacts on productivity by adjusting forest structure and showed stronger influence than temperature and precipitation.
    ConclusionStructure diversity and species diversity are direct driving factors for forest productivity in temperate forests in Northeast China, while climatic factors and dominant height of stand affect forest productivity by influencing forest structure. The results provide a theoretical basis for the sustainable management and management of temperate forests in Northeast China, showing important practical significance.
  • [1]
    Piao S, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 2013, 19(7): 2117−2132. doi: 10.1111/gcb.12187
    [2]
    Ruiz-Benito P, Madrigal-Gonzalez J, Ratcliffe S, et al. Stand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomes[J]. Ecosystems, 2014, 17(8): 1439−1454. doi: 10.1007/s10021-014-9806-0
    [3]
    Spathelf P, Van Der Maaten E, Van Der Maaten-Theunissen M, et al. Climate change impacts in European forests: the expert views of local observers[J]. Annals of Forest Science, 2014, 71(2): 131−137. doi: 10.1007/s13595-013-0280-1
    [4]
    Charru M, Seynave I, Hervé J C, et al. Spatial patterns of historical growth changes in Norway spruce across western European mountains and the key effect of climate warming[J]. Trees, 2014, 28(1): 205−221. doi: 10.1007/s00468-013-0943-4
    [5]
    Bosela M, Štefančík I, Petráš R, et al. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity[J]. Agricultural and Forest Meteorology, 2016, 222: 21−31. doi: 10.1016/j.agrformet.2016.03.005
    [6]
    Burkhart H E, Tomé M. Modeling forest trees and stands[M]. Berlin: Springer Science & Business Media, 2012.
    [7]
    Ratcliffe S, Liebergesell M, Ruiz-Benito P, et al. Modes of functional biodiversity control on tree productivity across the European continent[J]. Global Ecology and Biogeography, 2016, 25(3): 251−262. doi: 10.1111/geb.12406
    [8]
    Potter K M, Woodall C W. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests[J]. Forest Ecology and Management, 2014, 321: 117−129. doi: 10.1016/j.foreco.2013.06.026
    [9]
    Wu X, Wang X, Tang Z, et al. The relationship between species richness and biomass changes from boreal to subtropical forests in China[J]. Ecography, 2015, 38(6): 602−613. doi: 10.1111/ecog.2015.v38.i6
    [10]
    Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests[J/OL]. Science, 2016, 354: aaf8957 [2018−12−23]. http://doi.org/10.1126/science.aaf8957.
    [11]
    Zhang Y, Chen H Y H, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J]. Functional Ecology, 2017, 31(2): 419−426. doi: 10.1111/fec.2017.31.issue-2
    [12]
    Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass[J]. Journal of Ecology, 2015, 103(5): 1245−1252. doi: 10.1111/1365-2745.12425
    [13]
    Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
    [14]
    Forrester D I. The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process[J]. Forest Ecology and Management, 2014, 312: 282−292. doi: 10.1016/j.foreco.2013.10.003
    [15]
    Jucker T, Avăcăriţei D, Bărnoaiea I, et al. Climate modulates the effects of tree diversity on forest productivity[J]. Journal of Ecology, 2016, 104(2): 388−398. doi: 10.1111/1365-2745.12522
    [16]
    Dănescu A, Albrecht A T, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany[J]. Oecologia, 2016, 182(2): 319−333. doi: 10.1007/s00442-016-3623-4
    [17]
    谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149−1156.

    Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broadleaved Korean pine forest in Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1149−1156.
    [18]
    王春晶. 东北森林植物多样性分析及保护建议[D]. 哈尔滨: 东北林业大学, 2014.

    Wang C J. The analysis and conservation suggestion for plant diversity of northeastern China[D]. Harbin: Northeast Forestry University, 2014.
    [19]
    刘琪璟, 孟盛旺, 周华, 等. 中国立木材积表[M]. 北京: 中国林业出版社, 2017.

    Liu Q J, Meng S W, Zhou H, et al. Chinese timber table[M]. Beijing: China Forestry Publishing House, 2017.
    [20]
    吉林省立木材积、出材率表[S]. 吉林: 吉林省林业厅, 2015.

    Jilin Province standing volume, out-put table[S]. Jilin: Jilin Provincial Forestry Department, 2015.
    [21]
    黑龙江省立木材积表[S]. 哈尔滨: 黑龙江省营林局, 1981.

    Heilongjiang provincial standing volume table[S]. Harbin: Heilongjiang Forestry Administration, 1981.
    [22]
    Clutter J L. Compatible growth and yield models for loblolly pine[J]. Forest Science, 1963, 9(3): 354−371.
    [23]
    Skovsgaard J P, Vanclay J K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands[J]. Forestry: an International Journal of Forest Research, 2008, 81(1): 13−31. doi: 10.1093/forestry/cpm041
    [24]
    Fox J. Applied regression analysis and generalized linear models[M]. London: Sage Publications, 2015.
    [25]
    Fahey R T, Fotis A T, Woods K D. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests[J]. Ecological Applications, 2015, 25(3): 834−847. doi: 10.1890/14-1012.1
    [26]
    Wright I J, Reich P B, Atkin O K, et al. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites[J]. New Phytologist, 2006, 169(2): 309−319. doi: 10.1111/nph.2006.169.issue-2
    [27]
    Schaphoff S, Reyer C P O, Schepaschenko D, et al. Tamm Review: observed and projected climate change impacts on Russia ’s forests and its carbon balance[J]. Forest Ecology and Management, 2016, 361: 432−444. doi: 10.1016/j.foreco.2015.11.043
    [28]
    Forrester D I, Ammer C, Annighöfer P J, et al. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe[J]. Journal of Ecology, 2018, 106(2): 746−760. doi: 10.1111/1365-2745.12803
    [29]
    郭艳荣, 吴保国, 刘洋, 等. 立地质量评价研究进展[J]. 世界林业研究, 2012, 25(5):47−52.

    Guo Y R, Wu B G, Liu Y, et al. Research progress of site quality evaluation[J]. World Forestry Research, 2012, 25(5): 47−52.
    [30]
    唐诚, 王春胜, 曾杰, 等. 立地指数−环境因子模型评价森林立地生产力研究进展[J]. 世界林业研究, 2018, 31(4):48−53.

    Tang C, Wang C S, Zeng J, et al. Advances in forest site productivity evaluation with relationship model of site index and environmental factors[J]. World Forestry Research, 2018, 31(4): 48−53.
    [31]
    Gonzalez-Benecke C A, Teskey R O, Dinon-Aldridge H, et al. Pinus taeda forest growth predictions in the 21st century vary with site mean annual temperature and site quality[J]. Global Change Biology, 2017, 23(11): 4689−4705. doi: 10.1111/gcb.2017.23.issue-11
    [32]
    Palahí M, Pukkala T, Kasimiadis D, et al. Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece[J]. Annals of Forest Science, 2008, 65(5): 501.
  • Related Articles

    [1]Mei Xuesong, Dong Lingbo, Chen Guanmou. Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models[J]. Journal of Beijing Forestry University, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
    [2]Fan Xiuhua, Zhang Baoquan, Fan Chunyu. Effects of species diversity and structural diversity on productivity in different succession stages of typical natural forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(12): 1-8. DOI: 10.12171/j.1000-1522.20210071
    [3]Bai Yu, Yang Hua, Wen Jing, Wang Quanjun. Study on forest structure diversity based on the neighbourhood trees[J]. Journal of Beijing Forestry University, 2020, 42(6): 52-58. DOI: 10.12171/j.1000-1522.20190120
    [4]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [5]Wei Anran, Zhang Yuqiu, Tan Lingzhao, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest[J]. Journal of Beijing Forestry University, 2019, 41(5): 148-158. DOI: 10.13332/j.1000-1522.20190018
    [6]WANG Shu-li, LIANG Xiao-jiao, MA Chao, ZHOU Jian-ping. Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model[J]. Journal of Beijing Forestry University, 2017, 39(1): 1-8. DOI: 10.13332/j.1000-1522.20160101
    [7]ZHOU Jian-ping, WANG Shu-li.. Coupling relationship of structure and tree diversity between upper and lower canopy layer based on structural equation model.[J]. Journal of Beijing Forestry University, 2015, 37(9): 9-16. DOI: 10.13332/j.1000-1522.20140400
    [8]WANG Yan, YANG Hua, LI Yan-li, QIU Shi. Tree competition index based on the structural equation model[J]. Journal of Beijing Forestry University, 2015, 37(4): 28-37. DOI: DOI:10.13332/j.1000-1522.20140075
    [9]WANG Dong-zhi, ZHANG Zhi-dong, MU Hong-xiang, LI Yong-ning, HUANG Xuan-rui. Applications of structural equation model in the management of Larix principis-rupprechtii plantations[J]. Journal of Beijing Forestry University, 2015, 37(3): 69-75. DOI: 10.13332/j.1000-1522.20140326
    [10]WANG Shu-li, ZHOU Jian-ping. Coupling relationship between stand growth and impacting factors based on structural equation model[J]. Journal of Beijing Forestry University, 2014, 36(5): 7-12. DOI: 10.13332/j.cnki.jbfu.2014.05.011
  • Cited by

    Periodical cited type(18)

    1. 肖欢,叶尔江·拜克吐尔汗,张春雨,赵秀海. 长白山阔叶红松林林层群落结构与生产力的关系. 林业科学. 2024(03): 57-64 .
    2. 胡彦雯,林森炫,陈贝贝,赵秀海,张春雨,匡文浓. 青海省东北部森林林下物种多样性的驱动因素. 北京林业大学学报. 2024(06): 28-37 . 本站查看
    3. 路健,史蓓涵,杨倩,张雪倩,闫琰. 秦岭典型群落木本植物生物量影响因素研究. 西北林学院学报. 2024(05): 151-158 .
    4. 赵芸,江蓝,李志辉,韦鑫,朱静,何中声,刘金福,郭相亿,张朝鹏. 福建省牛姆林常绿阔叶林木本植物组成与结构特征. 北京林业大学学报. 2024(12): 11-20 . 本站查看
    5. 龚玉凤,吴兆飞,付永硕,王姝心,陈艳生,王树标,张珊珊,张伟. 气候变化对北京常见树种春季萌芽的影响——基于控制实验研究. 生态学报. 2023(05): 1948-1958 .
    6. 闫媛媛,郭琪,管俊泽,刘志,王东男,谷加存. 红松和水曲柳叶生态化学计量及养分重吸收特征的地理变异. 应用生态学报. 2023(04): 977-984 .
    7. 张萌,范秀华,岳庆敏,韩卓秀,黄一鑫. 吉林蛟河针阔混交林生物与非生物因素对生产力的影响. 林业科学. 2023(12): 71-77 .
    8. 刘铭波,韩海荣,程小琴,蔡锰柯,刘慧敏. 山西灵空山典型天然林空间结构特征及其对生产力的影响. 西北林学院学报. 2022(01): 33-40 .
    9. 曲凌昊,赵秀海,张春雨. 3-PG模型在天然兴安落叶松林生长因子预测中的应用. 林业科学研究. 2022(01): 158-165 .
    10. 张岗岗,王洋,刘艳萍,范定臣. 黄河故道刺槐人工林结构多样性特征. 中南林业科技大学学报. 2022(12): 50-59 .
    11. 安璐,吴兆飞,范春雨,张春雨,赵秀海. 长白山次生杨桦林种群空间点格局及密度制约效应. 生态学报. 2021(04): 1461-1471 .
    12. 鲁君悦,吴兆飞,张春雨,赵秀海. 吉林蛟河针阔混交林林层结构对生产力的影响. 生态学报. 2021(05): 2024-2032 .
    13. 董灵波,田栋元,陈莹,刘兆刚. 基于结构方程模型的兴安落叶松天然林更新影响因素. 应用生态学报. 2021(08): 2763-2772 .
    14. 董雪婷,张静,张志东,黄选瑞. 树种相互作用、林分密度和树木大小对华北落叶松生产力的影响. 应用生态学报. 2021(08): 2722-2728 .
    15. 鲁君悦,张春雨,赵秀海. 吉林省蛟河市针阔混交林林层结构与地形的关系. 生态学报. 2021(16): 6613-6620 .
    16. 彭潔莹,谢缘铭,刘文帧,闫琰. 小陇山锐齿栎林木本植物物种丰富度与生产力关系研究. 北京林业大学学报. 2021(11): 11-19 . 本站查看
    17. 庞荣荣,彭潔莹,闫琰. 太白山次生锐齿栎林地上生物量影响因素. 林业科学. 2021(10): 157-165 .
    18. 李明鲁,吴兆飞,邱华,张春雨,赵秀海. 采伐对吉林蛟河阔叶红松林生态功能的短期影响. 北京林业大学学报. 2019(09): 40-49 . 本站查看

    Other cited types(22)

Catalog

    Article views (4649) PDF downloads (160) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return