• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shen Jianbo, Wang Yingkuan, Lei Xiangdong, Lei Yuancai, Wang Qiulai, Ye Jinsheng. Site quality evaluation of uneven-aged mixed coniferous and broadleaved stands in Guangdong Province of southern China based on BP neural network[J]. Journal of Beijing Forestry University, 2019, 41(5): 38-47. DOI: 10.13332/j.1000-1522.20190028
Citation: Shen Jianbo, Wang Yingkuan, Lei Xiangdong, Lei Yuancai, Wang Qiulai, Ye Jinsheng. Site quality evaluation of uneven-aged mixed coniferous and broadleaved stands in Guangdong Province of southern China based on BP neural network[J]. Journal of Beijing Forestry University, 2019, 41(5): 38-47. DOI: 10.13332/j.1000-1522.20190028

Site quality evaluation of uneven-aged mixed coniferous and broadleaved stands in Guangdong Province of southern China based on BP neural network

More Information
  • Received Date: January 14, 2019
  • Revised Date: March 03, 2019
  • Available Online: May 06, 2019
  • Published Date: April 30, 2019
  • ObjectiveThe calculation to the site index of uneven-aged coniferous and broadleaved mixed stands has always been a difficult point in the evaluation of site quality. At home and abroad, there are few studies on the site index model of uneven-aged coniferous and broadleaved mixed stands. In order to establish a more accurate site index of coniferous and broadleaved mixed stands, the model introduces the neural network model into the site quality evaluation of uneven-aged coniferous and broadleaved mixed stands.
    MethodIn this study, uneven-aged coniferous and broad-leaved mixed stands in Guangdong province were used as study object, the stand dominant tree height model and site index model to uneven-aged coniferous and broadleaved mixed forests were estabished based on neural network. Besides the age factor, altitude, slope, slope direction, slope position, soil thickness and humus layer thickness were added. The influence of the basal area ratio of coniferous and broad-leaved species on the site index were also considered, then the site index model of coniferous and broadleaved mixed stands was estabished.
    ResultThe results showed that the maximum value of the site index to the uneven-aged coniferous and broadleaved mixed stands was 21.4 m, the minimum value was 6.1 m, the average value was 13.7 m, the median was 13.6 m, and the standard deviation was 3.2 m. The difference between the maximum and minimum values of the site index was 15.3 m.
    ConclusionFrom the results, it can be reflected that the landforms in Guangdong Province are complex and fragmented, and there are more mountains and less flat land, and the site conditions are different one another. In addition, due to the complexity and diversity of tree species and tree species ratio in Guangdong Province, then it lead to quite different in the reference age. Therefore, the site index is not the same one another. In the computation of the site index of coniferous and broadleaved mixed stands, the site factors such as altitude, slope, slope aspect, slope position, soil thickness and humus layer thickness were added to improve the prediction accuracy of the site index of coniferous and broadleaved mixed stands. The results provide a more accurate method for the calculation of the site index of uneven-aged coniferous and broadleaved mixed stands.
  • [1]
    Kleinn C, Fernández B H, Campos J J. Site productivity estimation using height-diameter relationships in Costa Rican secondary forests[J]. Investigación Agraria Sistemas y Recursos Forestales, 2004, 13: 295−304.
    [2]
    孟宪宇.测树学[M]. 第3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest measurements[M]. Third edition. Beijing: China Forestry Publishing House, 2006.
    [3]
    张超, 彭道黎, 黄国胜, 等. 基于森林清查数据的三峡库区林地立地质量评价[J]. 东北林业大学学报, 2015, 43(11):56−61. doi: 10.3969/j.issn.1000-5382.2015.11.012

    Zhang C, Peng D L, Huang G S, et al. Site quality evaluation in Three Gorges Reservoir region based on forest inventory data[J]. Journal of Northeast Forestry University, 2015, 43(11): 56−61. doi: 10.3969/j.issn.1000-5382.2015.11.012
    [4]
    黄国胜, 马炜, 王雪军, 等. 基于一类清查数据的福建省立地质量评价技术[J]. 北京林业大学学报, 2014, 36(3):1−8.

    Huang G S, Ma W, Wang X J, et al. Forestland site quality evaluation of Fujian Province based on continuous forest inventory data[J]. Journal of Beijing Forestry University, 2014, 36(3): 1−8.
    [5]
    李际平, 姚东和. BP模型在单木树高与胸径生长模拟中的应用[J]. 中南林业科技大学学报, 1996, 16(3):34−36.

    Li J P, Yao D H. Application of BP neural network model to the simulation of breast-height diameter and tree-height growth[J]. Journal of Central South Forestry University, 1996, 16(3): 34−36.
    [6]
    马天晓, 赵晓峰, 黄家荣, 等. 基于人工神经网络的树高曲线模型研究[J]. 河南林业科技, 2006, 26(1):4−5. doi: 10.3969/j.issn.1003-2630.2006.01.002

    Ma T X, Zhao X F, Huang J R, et al. Research on the height-diameter model of tree with artificial neural network[J]. Journal of Henan Forestry Science and Technology, 2006, 26(1): 4−5. doi: 10.3969/j.issn.1003-2630.2006.01.002
    [7]
    徐志扬. 基于BP神经网络的马尾松树高曲线模型[J]. 林业调查规划, 2015, 40(2):6−8. doi: 10.3969/j.issn.1671-3168.2015.02.002

    Xu Z Y. Height-diameter model for Pinus massoniana based on BP neural network[J]. Forest Inventory and Planning, 2015, 40(2): 6−8. doi: 10.3969/j.issn.1671-3168.2015.02.002
    [8]
    董云飞, 孙玉军, 王轶夫, 等. 基于BP神经网络的杉木标准树高曲线[J]. 东北林业大学, 2014, 42(7):154−156. doi: 10.3969/j.issn.1000-5382.2014.07.036

    Dong Y F, Sun Y J, Wang Y F, et al. Generalized height-diameter model for Chinese fir based on BP neural network[J]. Journal of Northeast Forestry University, 2014, 42(7): 154−156. doi: 10.3969/j.issn.1000-5382.2014.07.036
    [9]
    沈剑波, 雷相东, 李玉堂, 等. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018, 42(2):147−154.

    Shen J B, Lei X D, Li Y T, et al. Prediction mean height for Larix olgensis plantation based on BP neural network[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(2): 147−154.
    [10]
    张德丰. MATLAB神经网络应用设计[M]. 北京: 机械工业出版社, 2009.

    Zhang D F. MATLAB neural network application design[M]. Beijing: China Machine Press, 2009.
    [11]
    Sun J, Mao H, Liu J, et al. The research of paddy rice moisture lossless detection based on L-M BP neural network[J]. Computer & Computing Technologies in Agriculture, 2008, 120(1): 83−93.
    [12]
    Selvamuthu D, Kumar V, Mishra A. Indian stock market prediction using artificial neural networks ontick data[J]. Financial Innovation, 2019, 5(1): 1−12. doi: 10.1186/s40854-018-0118-9
    [13]
    郭阳明, 冉从宝, 姬昕禹, 等. 基于组合优化BP神经网络的模拟电路故障诊断[J]. 西北工业大学学报, 2013, 31(1):44−48. doi: 10.3969/j.issn.1000-2758.2013.01.009

    Guo Y M, Ran C B, Ji X Y, et al. Fault diagnosis in analog circuits based on combined-optimization BP neural networks[J]. Journal of Northwestern Polytechnical University, 2013, 31(1): 44−48. doi: 10.3969/j.issn.1000-2758.2013.01.009
    [14]
    Nukala B T, Shibuya N, Rodriguez A, et al. An efficient and robust fall detection system using wireless gait analysis sensor with artificial neural network (ANN) and support vector machine (SVM) algorithms[J]. Open Journal of Applied Biosensor, 2015, 3(4): 29−39.
    [15]
    陈永富, 杨彦臣, 张怀清, 等. 海南岛热带天然山地雨林立地质量评价研究[J]. 林业科学研究, 2000, 13(2):134−140. doi: 10.3321/j.issn:1001-1498.2000.02.005

    Chen Y F, Yang Y C, Zhang H Q, et al. A study on site quality evaluation of natural tropical mountainous rain forest in Hainan Island[J]. Forest Research, 2000, 13(2): 134−140. doi: 10.3321/j.issn:1001-1498.2000.02.005
    [16]
    朱光玉, 康立. 森林立地生产力评价指标与方法[J]. 西北林学院学报, 2016, 31(6):275−281. doi: 10.3969/j.issn.1001-7461.2016.06.47

    Zhu G Y, Kang L. A review of forest site productivity evaluation indicators and methods[J]. Journal of Northwest Forestry University, 2016, 31(6): 275−281. doi: 10.3969/j.issn.1001-7461.2016.06.47
    [17]
    翁国庆, 白卫国, 王维芳, 等. 地位指数表编制技术规程[S]. 北京: 中国标准出版社, 2015.

    Weng G Q, Bai W G, Wang W F, et al. Technical regulations for drafting of site index table[S]. Beijing: Standards Press of China, 2015.
    [18]
    李际平,姚东和. BP模型在单木树高与胸径生长模拟中的应用[J]. 中南林学院学报, 1996, 16(3):34−36.

    Li J P, Yao D H. Application of BP neural network model to the simulation of breast-height diameter and tree-height growth[J]. Journal of Central South Forestry University, 1996, 16(3): 34−36.
    [19]
    徐罗, 亢新刚, 郭韦韦, 等. 天然云冷杉针阔混交林立地质量评价[J]. 北京林业大学学报, 2016, 38(5):11−22.

    Xu L, Kang X G, Guo W W, et al. Site quality evaluation of natural spruce-fir and broadleaf mixed stands[J]. Journal of Beijing Forestry University, 2016, 38(5): 11−22.
    [20]
    郭如意, 韦新良, 刘姗姗. 天目山区针阔混交林立地质量评价研究[J]. 西北林学院学报, 2016, 31(4):233−240. doi: 10.3969/j.issn.1001-7461.2016.04.39

    Guo R Y, Wei X L, Liu S S. Site quality evaluation of coniferous and broad-leaved mixed forest in Tianmu Mountain[J]. Journal of Northwest Forestry University, 2016, 31(4): 233−240. doi: 10.3969/j.issn.1001-7461.2016.04.39
    [21]
    黄旭光, 周俊朝, 黄柏华, 等. 基于人工神经网络对栎树天然林地位指数模拟系统的研究[J]. 河南农业大学学报, 2015, 49(2):190−194.

    Huang X G, Zhou J C, Huang B H, et al. Study of oak growth dynamic simulation system based on artificial neural network[J]. Journal of Henan Agricultural University, 2015, 49(2): 190−194.
    [22]
    阙泽胜. 广东省三维地形场景仿真研究[J]. 测绘地理信息, 2016, 41(3):100−102.

    Que Z S. Study on 3D terrain scene simulation in Guangdong Province[J]. Journal of Geomatic, 2016, 41(3): 100−102.
  • Related Articles

    [1]Wu Zihan, Ji Jiachen, Zhang Fan. Optimization and attribution analysis of annual runoff simulation models in the upper reaches of the Heihe River, northwestern China[J]. Journal of Beijing Forestry University, 2024, 46(3): 80-90. DOI: 10.12171/j.1000-1522.20230212
    [2]Fan Lin, Wei Tianxing, Zhang Xiaoming, Miao Jindian, Li Yiran. Spatiotemporal variation of land use in counties of the upper reaches of the Beiluo River and its impact on runoff and sediment[J]. Journal of Beijing Forestry University, 2024, 46(2): 95-104. DOI: 10.12171/j.1000-1522.20230121
    [3]Gao Mengyao, Li Chi. Law and mechanism of spatio-temporal evolution of urban greenspace in the lower reaches of the Yellow River[J]. Journal of Beijing Forestry University, 2023, 45(3): 113-126. DOI: 10.12171/j.1000-1522.20220129
    [4]Bi Zaoying, Li Yanzhong, Lin Yixue, Bu Tianhui, Huang Rong. Quantitative assessment on the effects of vegetation changes on runoff based on Budyko theory in the Kuyehe River Basin of northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 61-71. DOI: 10.12171/j.1000-1522.20190330
    [5]ZHANG Shou-hong, LIU Su-xia, MO Xing-guo, SHU Chang, ZHENG Chao-lei, HOU Bo. Impacts of precipitation variation and soil and water conservation measures on runoff and sediment yield in the Wuding River Basin,middle reaches of the Yellow River.[J]. Journal of Beijing Forestry University, 2010, 32(4): 161-168.
    [6]XIN Zhong-bao, YU Xin-xiao, GAN Jing, WANG Xiao-ping, LI Jin-hai. Vegetation restoration and its effects on runoff and sediment yield in Hekouzhen Longmen Section of the middle reaches of Yellow River[J]. Journal of Beijing Forestry University, 2009, 31(5): 1-8.
    [7]LI Zi-jun, LI Xiu-bin. Trend and causation analysis of runoff variation in the upper reach of Chaobaihe River Basin in northern China during 1961--2005[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 82-87.
    [8]SUN Ning, LI Xiu-bin, LI Zi-jun, YU Xin-xiao. Simulation of impacts of changes in land use and cover on annual streamflow in the upper reach of Chaohe River Basin.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 22-30.
    [9]LI Zi-jun, LI Xiu-bin, YU Xin-xiao. Impacts of soil and water conservation measures on annual runoff in the upper Chaohe River Basin in northern China based on hydrological analysis method[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 6-11.
    [10]HU Jian-zhong. Carbon storage of artificial forests in rehabilitated lands in the upper reaches of the Yellow River[J]. Journal of Beijing Forestry University, 2005, 27(6): 1-8.
  • Cited by

    Periodical cited type(3)

    1. 郭英男,刘月扬,马静雨,张敬,马鑫彤,张馨月,刘建雨,姚娜,刘秀明,李海燕. 红花PAL家族全基因组分析及其在悬浮细胞中的表达. 中草药. 2021(11): 3362-3372 .
    2. 王万奇,齐婉竹,赵秋爽,曾栋,刘轶,付鹏跃,曲冠证,赵曦阳. 白桦BpJMJ18基因启动子克隆及表达分析. 植物研究. 2020(05): 751-759 .
    3. 张勇,胡晓晴,李豆,刘雪梅. 白桦BpSPL8启动子的克隆及异源过表达BpSPL8对拟南芥耐旱性的影响. 北京林业大学学报. 2019(08): 67-75 . 本站查看

    Other cited types(5)

Catalog

    Article views (2882) PDF downloads (111) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return