• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Minghui, Hui Gangying, Hu Yanbo, Zhang Gongqiao, Zhang Ganggang, Liu Ruihong, Yang Aiming, Zhao Zhonghua, Wang Haibin. Impacts of structure-based forest management on forest quality of broadleaved Korean pine forests in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 19-30. DOI: 10.13332/j.1000-1522.20190032
Citation: Chen Minghui, Hui Gangying, Hu Yanbo, Zhang Gongqiao, Zhang Ganggang, Liu Ruihong, Yang Aiming, Zhao Zhonghua, Wang Haibin. Impacts of structure-based forest management on forest quality of broadleaved Korean pine forests in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 19-30. DOI: 10.13332/j.1000-1522.20190032

Impacts of structure-based forest management on forest quality of broadleaved Korean pine forests in northeastern China

More Information
  • Received Date: January 14, 2019
  • Revised Date: March 05, 2019
  • Available Online: April 29, 2019
  • Published Date: April 30, 2019
  • ObjectiveThis paper aims to study the medium and long term effects of structure-based forest management (SBFM) on forest quality of broadleaved Korean pine forests in Northeastern China and to explore the mechanism of forest management in forest quality improvement.
    MethodSix sample plots with an area of 100 m × 100 m were set up in Jiaohe Forestry Experimental Area, Jilin Province of northeastern China. Among the six plots, there is 1 target sample plot, 4 managed sample plots and 1 control plot. The SBFM measures were applied in 4 managed plots for data collection. Quantitative and comparative analysis has been carried out using Excel Pivot Tables, R 3.4.3, Origin 2015, Winkelmass to study the effects of SBFM on forest productivity, density, structure and comprehensive status of the stand.
    ResultThe results indicated that after applying SBFM, the average annual stand volume growth (mean) of managed stands was 17.28% more than those of control, and growth rate was 17.60% higher, meanwhile the average annual stand basal area growth (mean) and growth rate of it increased by 42.86% and 47.37%, respectively, and the rate of tree mortality decreased by 57.22%. In a word, the productivity was significantly improved. With main conifers maintaining a high level of species dominance, the horizontal distribution of managed stands was random pattern, i.e. the ideal natural forest pattern. The optimum micro-structures with high mixing and random distribution remained a high proportion throughout the study, while those with low mixing and non-random distribution accounted for a low proportion and showed a downward trend in managed stands. The comprehensive status of the managed stand had been optimized rapidly by SBFM, the state of stands was maintained stable, and the continuous and regular follow-up operation was required to maintain the management effect.
    ConclusionStructure-based forest management improves the quality of broadleaved Korean pine forests in Northeastern China in a precise manner. SBFM has been proved to be an effective and reliable way to improve stand productivity and optimize stand spatial structure at the same time.
  • [1]
    邓海燕, 莫晓勇. 森林质量精准提升综述[J]. 桉树科技, 2017, 34(2):41−48.

    Deng H Y, Mo X Y. Improvement of forest quality through precision forestry[J]. Eucalypt Science & Technology, 2017, 34(2): 41−48.
    [2]
    张会儒, 雷相东. 森林经理与森林质量精准提升[J]. 国土绿化, 2017, 26(8):13−15.

    Zhang H R, Lei X D. Forest management and accurate improvement of forest quality[J]. Land Greening, 2017, 26(8): 13−15.
    [3]
    刘世荣, 马姜明, 缪宁. 中国天然林保护、生态恢复与可持续经营的理论与技术[J]. 生态学报, 2015, 35(1):212−218.

    Liu S R, Ma J M, Miao N. Achievements in natural forest protection, ecological restoration, and sustainable management in China[J]. Acta Ecologica Sinica, 2015, 35(1): 212−218.
    [4]
    Gayer K. Der Waldbau[M]. Berlin: Verlag Parey, 1882.
    [5]
    Möller A. Der Dauerwaldgedanke: seinsinn und seine bedeutung[M]. Berlin: Verlag Julius Springer, 1992.
    [6]
    Abetz P. Zur standraumregulierung in mischbeständen und auswahl von zukunftsbäumen[J]. Allgemeine Forst und Jagdzeitung, 1974, 29(41): 871−873.
    [7]
    Gurnaud A. Lasylviculturefrançaise et la méthode du contrôle[M]. Besançon: Jacquin, 1886.
    [8]
    Biolley H. Barême du tarifconventionnel unique pour l ’application du controle au traitement des forêtspar[M]. Georges: Bridel&cie, 1890.
    [9]
    陈大珂, 周晓峰, 视宁, 等. 天然次生林-结构、功能、动态与经营[M]. 哈尔滨: 东北林业大学出版社, 1994.

    Chen D K, Zhou X F, Shi N, et al. Nature secondary forest structure function dynamic and management[M]. Harbin: Northeast Forestry University Press, 1994.
    [10]
    袁士云. 甘肃省小陇山现有林分经营模式评价研究[D]. 北京: 中国林业科学研究院, 2010.

    Yuan S Y. Evaluation of existing forest management models in Xiao Longshan, Gansu Province[D]. Beijing: Chinese Academy of Forestry, 2010.
    [11]
    惠刚盈, Gadow K V, 胡艳波, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y, Gadow K V, Hu Y B, et al. Structure-based forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [12]
    Li Y F, Hui G Y, Zhang Z H, et al. The bivariate distribution characteristics of spatial structure in nature Korean pine broad-leaved forest[J]. Journal of Vegetation Science, 2012, 23(6): 1180−1190. doi: 10.1111/jvs.2012.23.issue-6
    [13]
    Hui G Y, Pommerening A. Analysing tree species and size diversity patterns in multi-species uneven-aged forest of Northern China[J]. Forest Ecology and Management, 2014, 316(6): 125−138.
    [14]
    Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology and Management, 2006, 224(3): 266−277. doi: 10.1016/j.foreco.2005.12.039
    [15]
    惠刚盈, Gadow K V, 胡艳波, 等. 林木分布格局类型的角尺度均值分析方法[J]. 生态学报, 2004, 24(6):1225−1229. doi: 10.3321/j.issn:1000-0933.2004.06.020

    Hui G Y, Gadow K V, Hu Y B, et al. Characterizing forest spatial distribution pattern with the mean value of uniform angle index[J]. Acta Ecologica Sinica, 2004, 24(6): 1225−1229. doi: 10.3321/j.issn:1000-0933.2004.06.020
    [16]
    雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响[J]. 林业科学, 2005, 41(4):78−85. doi: 10.3321/j.issn:1001-7488.2005.04.014

    Lei X D, Lu Y C, Zhang H R, et al. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis[J]. Scientia Silvae Sinicae, 2005, 41(4): 78−85. doi: 10.3321/j.issn:1001-7488.2005.04.014
    [17]
    高云昌, 张文辉, 何景峰, 等. 黄龙山油松人工林间伐效果的综合评价[J]. 应用生态学报, 2013, 24(5):1313−1319.

    Gao Y C, Zhang W H, He J F, et al. Effects of thinning intensity on Pinus tabulaeformis plantation in Huanglong Mountain, Northwest China: a comprehensive evaluation[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1313−1319.
    [18]
    张悦, 郭利平, 易雪梅, 等. 长白山北坡3个森林群落主要树种种间联结性[J]. 生态学报, 2015, 35(1):106−115.

    Zhang Y, Guo L P, Yi X M, et al. Analysis of interspecific associations among major tree species in three forest communities on the north slope of Changbai Mountain[J]. Acta Ecologica Sinica, 2015, 35(1): 106−115.
    [19]
    王祖华, 李瑞霞, 关庆伟. 间伐对杉木不同根序细根形态、生物量和氮含量的影响[J]. 应用生态学报, 2013, 24(6):1487−1493.

    Wang Z H, Li R X, Guan Q W. Effects of thinning on fine-root morphology, biomass and N concentration of different branch orders of Chinese fir[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1487−1493.
    [20]
    徐高福, 余启国, 孙益群, 等. 新时期森林抚育经营技术与措施[J]. 林业调查规划, 2010, 35(5):131−134.

    Xu G F, Yu Q G, Sun Y Q, et al. Technology and measures of forest tending and management in new period[J]. Forest Inventory and Planning, 2010, 35(5): 131−134.
    [21]
    杜纪山, 唐守正. 抚育间伐对林分生长的效应及其模型研究[J]. 北京林业大学学报, 1996, 18(1):79−83. doi: 10.3321/j.issn:1000-1522.1996.01.013

    Du J S, Tang S Z. Effects of tending and thinning on stand growth and model study[J]. Journal of Beijing Forestry University, 1996, 18(1): 79−83. doi: 10.3321/j.issn:1000-1522.1996.01.013
    [22]
    李法胜, 于政中. 检查法林分生长预测及择伐模拟研究[J]. 林业科学, 1994, 30(6):531−539.

    Li F S, Yu Z Z. Growth predictions and selective cutting simulations to experimental stands of control method[J]. Scientia Silvae Sinicae, 1994, 30(6): 531−539.
    [23]
    王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014, 50(10):67−73.

    Wang Y X, Zhang S G, Lu Y C, et al. Initial effects of crop trees growth after crop tree release on Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2014, 50(10): 67−73.
    [24]
    Miller G W, Stringer J W, Mercker D C. Technical guide to crop tree release in hardwood forests[R/OL]. Knoxville: The University of Tennessee Agricultural Extension Service Publication Series PB1774, 2007[2019−03−06]. http://trace.tennessee.edu/utk_agexfores/19.
    [25]
    宁金魁. 北京西山地区典型植被类型森林发展类型设计研究[D]. 北京: 北京林业大学, 2009.

    Ning J K. Study on the designing of forest development types for typical vegetation types in Xi ’shan Region, Beijing, China[D]. Beijing: Beijing Forestry University, 2009.
    [26]
    万盼, 胡艳波, 张弓乔, 等. 甘肃小陇山油松与柴胡栽培土壤细菌群落特征[J]. 生态学报, 2018, 38(17):38−46.

    Wan P, Hu Y B, Zhang G Q, et al. Soil bacterial communities under Pinus tabuliformis Carr. and Bupleurum chinense plantations at Xiaolongshan Mountain of Gansu Province[J]. Acta Ecologica Sinica, 2018, 38(17): 38−46.
    [27]
    陈科屹, 张会儒, 雷向东. 天然次生林蒙古栎种群空间格局[J]. 生态学报, 2018, 38(10):3462−3470.

    Chen K Y, Zhang H R, Lei X D. Spatial pattern of Quercus mongolica in natural secondary forest[J]. Acta Ecologica Sinica, 2018, 38(10): 3462−3470.
    [28]
    万盼, 刘灵, 赵中华, 等. 沙地樟子松天然林林木大小分布特征[J]. 北京林业大学学报, 2017, 39(7):1−9.

    Wan P, Liu L, Zhao Z H, et al. Distribution characteristics of tree size of Pinus sylvestris var. mongolica nature forest on sandy soil[J]. Journal of Beijing Forestry University, 2017, 39(7): 1−9.
    [29]
    万盼. 经营方式对甘肃小陇山锐齿栎天然林林分质量的影响[D]. 北京: 中国林业科学研究院, 2018.

    Wan P. Impacts of forest management methods on stand quality of natural Quercus aliena var. acuteserrata forest in Xiaolongshan, Gansu Province[D]. Beijing: Chinese Academy of Forestry, 2018.
    [30]
    马建路, 庄丽文, 陈动, 等. 红松的地理分布[J]. 东北林业大学学报, 1992, 20(5):40−48.

    Ma J L, Zhuang L W, Chen D, et al. Geographic distribution of Pinus koraiensis in the world[J]. Journal of Northeast Forestry University, 1992, 20(5): 40−48.
    [31]
    Takahashi K, Mitsuishi D, Uemura S, et al. Stand structure and dynamics during a 16-year period in a sub-boreal conifer-hardwood mixed forest, northern Japan[J]. Forest Ecology and Management, 2003, 174(1−3): 39−50.
    [32]
    张悦, 易雪梅, 王远遐, 等. 采伐对红松种群结构与动态的影响[J]. 生态学报, 2015, 35(1):38−45. doi: 10.3969/j.issn.1673-1182.2015.01.008

    Zhang Y, Yi X M, Wang Y X, et al. Impact of tree harvesting on the population structure and dynamics of Pinus koraiensis (Pinaceae)[J]. Acta Ecologica Sinica, 2015, 35(1): 38−45. doi: 10.3969/j.issn.1673-1182.2015.01.008
    [33]
    张春雨, 赵秀海, 闫琰. 长白山不同演替阶段针阔混交林群落物种多度分布格局[J]. 植物生态学报, 2012, 36(9):923−934.

    Zhang C Y, Zhao X H, Yan Y. Species-abundance distribution patterns at different successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2012, 36(9): 923−934.
    [34]
    姜俊, 赵秀海. 吉林蛟河针阔混交林群落优势种群种间联结性[J]. 林业科学, 2011, 47(12):149−153. doi: 10.11707/j.1001-7488.20111222

    Jiang J, Zhao X H. Interspecific correlations among dominant tree species in the coniferous and broad-leaved mixed forest communities in Jiaohe, Jilin Province[J]. Scientia Silvae Sinicae, 2011, 47(12): 149−153. doi: 10.11707/j.1001-7488.20111222
    [35]
    倪瑞强. 长白山典型针阔混交林群落结构与动态研究[D]. 北京: 北京林业大学, 2014.

    Ni R Q. Studies on the community structure and dynamics of typical coniferous and broad-leaved mixed forests in Changbai Mountain Region[D]. Beijing: Beijing Forestry University, 2014.
    [36]
    赵中华, 惠刚盈, 胡艳波, 等. 结构化森林经营方法在阔叶红松林中的应用[J]. 林业科学研究, 2013, 26(4):467−472.

    Zhao Z H, Hui G Y, Hu Y B, et al. Application of structure based forest management in broadleaved korean pine mixed forest[J]. Forest Research, 2013, 26(4): 467−472.
    [37]
    惠刚盈, Gadow K V, 赵中华, 等. 结构化森林经营技术指南[M]. 北京: 中国林业出版社, 2010.

    Hui G Y, Gadow K V, Zhao Z H, et al. A guide to structure-based forest management[M]. Beijing: China Forestry Publishing House, 2010.
    [38]
    孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest measurement[M]. Beijing: China Forestry Publishing House, 2006.
    [39]
    惠刚盈, 克劳斯·冯佳多. 森林空间结构量化分析方法[M]. 北京: 中国科学技术出版社, 2003.

    Hui G Y, Gadow K V. Quantitative analysis of forest spatial structure[M]. Beijing: China Science and Technology Press, 2003.
    [40]
    赵中华. 基于林分状态特征的森林自然度评价研究[D]. 北京: 中国林业科学研究院, 2009.

    Zhao Z H. Evaluating forest naturalness based on stand state characteristics[D]. Beijing: Chinese Academy of Forestry, 2009.
    [41]
    王宏翔. 天然林林分空间结构的二阶特征分析[D]. 北京: 中国林业科学研究院, 2017.

    Wang H X. Analysis of second-order characteristics of stand spatial structure of natural forests[D]. Beijing: Chinese Academy of Forestry, 2017.
    [42]
    惠刚盈. 森林经营模式评价方法[M]. 北京: 科学出版社, 2012.

    Hui G Y. Evaluating method of forest management models[M]. Beijing: Science Press, 2012.
  • Related Articles

    [1]Chen Jiayi, Dai Ying, Zhang Naili. Effects of forest tree species diversity on soil carbon and nitrogen contents in China[J]. Journal of Beijing Forestry University, 2025, 47(2): 23-31. DOI: 10.12171/j.1000-1522.20220400
    [2]Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233
    [3]Zhang Lanqi, Yang Hua, Zhang Xiaohong. Relationship between tree growth and tree size, competition as well as species diversity in spruce-fir natural forests[J]. Journal of Beijing Forestry University, 2024, 46(5): 64-72. DOI: 10.12171/j.1000-1522.20220409
    [4]Bu Wensheng, Ma Yaohua, Liu Hongbing, Zhang Cancan, Li Yuxin, Zeng Shiqi, Yang Shiyun. Effects of mycorrhizal types and shade tolerance of tree species on carbon storage of standing dead branches[J]. Journal of Beijing Forestry University, 2022, 44(10): 85-92. DOI: 10.12171/j.1000-1522.20220350
    [5]Niu Yilong, Dong Lihu, Li Fengri. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation[J]. Journal of Beijing Forestry University, 2020, 42(2): 9-18. DOI: 10.12171/j.1000-1522.20190036
    [6]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [7]LIU Sheng-dong, GAO Wen-tao, LI Yan, SHI Ying, MENG Qing-fan. Comparative study of Cerambycidae species diversity in different forest stands of southern Zhangguangcai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(5): 110-118. DOI: 10.13332/j.1000-1522.20140287
    [8]GAO Jie, ZHANG Jun, CHENG Yan-xia, SUN Guo-wen. Multi-scale analysis on spatial patterns and tree species diversity in different forest types in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(6): 99-105. DOI: 10.13332/j.cnki.jbfu.2014.06.019
    [9]NI Cheng-cai, WANG Qing-feng. Model selection and fit of algebraic difference models for basal area of loblolly pine plantations.[J]. Journal of Beijing Forestry University, 2011, 33(3): 1-7.
    [10]NI Cheng-cai, YU Fu-ping, ZHANG Yu-xue, WEI Shi-xun. Application analysis and recent advances of projection growth models[J]. Journal of Beijing Forestry University, 2010, 32(4): 284-292.
  • Cited by

    Periodical cited type(7)

    1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 .
    2. 张晓姗,高嘉,王洪永,王霞,庞薇,陈寅,杜振宇,马风云,马丙尧. 我国栎树引种及其营养生长研究进展. 江苏林业科技. 2024(02): 48-52 .
    3. 邓坦,李文博,张向阳,王新建. 河南省栎类经营技术研究与建议. 河南林业科技. 2023(01): 1-5+30 .
    4. 廖科,刘振华,童方平,陈瑞,吴敏,蒋龙,龚发武,李贵. 不同混交比例对栎类混交林生长和土壤养分的影响. 中南林业科技大学学报. 2023(09): 80-88 .
    5. 娄明华,杨同辉,王卫兵,毛建方,徐婧,章建红. 四明山黄山松针阔混交林的树高—胸径模型. 林业与环境科学. 2023(05): 7-14 .
    6. 娄明华,白超,杨同辉. 宁波石栎-木荷天然常绿阔叶混交林的树高-胸径模型. 林业与环境科学. 2021(04): 46-54 .
    7. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .

    Other cited types(4)

Catalog

    Article views (2399) PDF downloads (161) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return