• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Qigang, Lei Xiangdong, Guo Hong, Li Haikui, Li Yutang. Stand biomass model of Larix olgensis plantations based on multi-layer perceptron networks[J]. Journal of Beijing Forestry University, 2019, 41(5): 97-107. DOI: 10.13332/j.1000-1522.20190035
Citation: Xu Qigang, Lei Xiangdong, Guo Hong, Li Haikui, Li Yutang. Stand biomass model of Larix olgensis plantations based on multi-layer perceptron networks[J]. Journal of Beijing Forestry University, 2019, 41(5): 97-107. DOI: 10.13332/j.1000-1522.20190035

Stand biomass model of Larix olgensis plantations based on multi-layer perceptron networks

More Information
  • Received Date: January 14, 2019
  • Revised Date: March 12, 2019
  • Available Online: April 29, 2019
  • Published Date: April 30, 2019
  • ObjectiveNeural network model can avoid the collinearity and heteroscedasticity of variables in modeling forest stand biomass. This paper aims to apply multi-layer perceptron networks to forest biomass model to provide methods for the calculation and prediction of forest biomass and carbon stocks at forest management unit and regional levels.
    MethodBased on 917 observations from the sample plots of larch plantations from national forest inventory in Jilin Province of northeastern China, the aboveground and total biomass models by log-transformed linear regression, and multi-layer perceptron networks with and without site factors were established. AIC, adjusted R2, RMSE, RMSEr and MAE were used to evaluate the models.
    ResultThe model with the highest prediction accuracy was the neural network one with the input unit quadratic mean diameters (D), stand mean height (H), stand density index (S), altitude (HB), slope (PD), slope aspect (PX), slope position (PW), two hidden layers and hidden unit number of 40−20. Compared with traditional log-transformed linear regression model, the adjusted R2 of the aboveground and total biomass models was increased from 0.902 1 to 0.914 1, and from 0.897 9 to 0.908 9, RMSEr was decreased from 6.330 5% to 5.992 2%, and from 6.490 1% to 6.153 6%, respectively. The neural network model with site factors had slightly higher estimation accuracy than that without site factors. The adjusted R2 of the aboveground and total biomass models was increased by 0.88% and 0.99%, and RMSEr decreased by 5.33% and 5.46%, respectively.
    ConclusionBiomass model based on multi-layer perceptron networks had similar performance in terms of model accuracy, but it could avoid treating the traditional assumptions such as the collinearity and heteroscedasticity of variables, and had the ability to calculate aboveground and total biomass models at one time.
  • [1]
    罗云建. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8):129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023

    Luo Y J. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023
    [2]
    雷相东, 张会儒, 牟惠生. 东北过伐林区蒙古栎林分相容性生物量模型研究[J]. 第四纪研究, 2010, 30(3):559−565. doi: 10.3969/j.issn.1001-7410.2010.03.14

    Lei X D, Zhang H R, Mu H S. Compatible stand biomass models of Mongolia oak forests in over logged forest regions, Northeast China[J]. Quaternary Sciences, 2010, 30(3): 559−565. doi: 10.3969/j.issn.1001-7410.2010.03.14
    [3]
    程堂仁, 冯菁, 马钦彦, 等. 基于森林资源清查资料的林分生物量相容性线性模型[J]. 北京林业大学学报, 2007, 29(5):110−113. doi: 10.3321/j.issn:1000-1522.2007.05.022

    Cheng T R, Feng J, Ma Q Y, et al. Linear models with compatibility of stand biomass based on the forest resource inventory data[J]. Journal of Beijing Forestry University, 2007, 29(5): 110−113. doi: 10.3321/j.issn:1000-1522.2007.05.022
    [4]
    董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 2018, 29(9):2825−2834.

    Dong L H, Li F R. Stand-level biomass estimation models for the tree layer of main forest types in East Daxing ’an Mountains, China.[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2825−2834.
    [5]
    欧光龙, 胥辉, 王俊峰, 等. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3):101−110.

    Ou G L, Xu H, Wang J F, et al. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. Journal of Beijing Forestry University, 2015, 37(3): 101−110.
    [6]
    赵嘉诚, 李海奎. 杉木单木和林分水平地下生物量模型的构建[J]. 林业科学, 2018, 54(2):81−89.

    Zhao J C, Li H K. Establishment of below-ground biomass equations for Chinese fir at tree and stand level[J]. Scientia Silvae Sinicae, 2018, 54(2): 81−89.
    [7]
    Vahedi A A. Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran[J]. Biomass and Bioenergy, 2016, 88: 66−76. doi: 10.1016/j.biombioe.2016.03.020
    [8]
    Sileshi G W. A critical review of forest biomass estimation models, common mistakes and corrective measures[J]. Forest Ecology and Management, 2014, 329: 237−254. doi: 10.1016/j.foreco.2014.06.026
    [9]
    董利虎. 东北林区主要树种及林分类型生物量模型研究[D]. 哈尔滨: 东北林业大学, 2015.

    Dong L H. Developing individual and stand-level biomass equations in Northeast China forest area[D]. Harbin: Northeast Forest University, 2015.
    [10]
    Nandy S, Singh R, Ghosh S, et al. Neural network-based modelling for forest biomass assessment[J]. Carbon Management, 2017, 8(4): 305−317. doi: 10.1080/17583004.2017.1357402
    [11]
    Stas S M, Rutishauser E, Chave J, et al. Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: comparing locally developed versus existing allometric models[J]. Forest ecology and management, 2017, 389: 27−34. doi: 10.1016/j.foreco.2016.12.010
    [12]
    Ercanlı İ, Günlü A, Şenyurt M, et al. Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey[J]. Forest Ecosystems, 2018, 5(1): 29. doi: 10.1186/s40663-018-0149-8
    [13]
    Özçelik R, Diamantopoulou M J, Eker M, et al. Artificial neural network models: an alternative approach for reliable aboveground Pine tree biomass prediction[J]. Forest Science, 2017, 63(3): 291−302.
    [14]
    王轶夫, 孙玉军, 郭孝玉. 基于BP神经网络的马尾松立木生物量模型研究[J]. 北京林业大学学报, 2013, 35(2):17−21.

    Wang Y F, Sun Y J, Guo X Y. Single-tree biomass modeling of Pinus massoniana based on BP neural network[J]. Journal of Beijing Forestry University, 2013, 35(2): 17−21.
    [15]
    解雅麟, 王海燕, 雷相东. 基于3-PG模型的长白落叶松人工林生长和生物量模拟[J]. 南京林业大学学报(自然科学版), 2018, 42(1):141−148.

    Xie Y L, Wang H Y, Lei X D. Growth and biomass simulation of Larix olgensis plantations based on 3-PG model[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2018, 42(1): 141−148.
    [16]
    国家林业与草原局. 立木生物量模型及碳计量参数落叶松[S]. 北京: 中国标准出版社, 2016.

    National Forestry and Grassland Administration of the People ’s Republic of China. Tree biomass models and related parameters to carbon accounting for Larix[S]. Beijing: Standards Press of China, 2016.
    [17]
    Goodfellow I, Bengio Y, Courville A, et al. Deep learning[M]. Cambridge: MIT Press, 2016.
    [18]
    Uzun H, Yıldız Z, Goldfarb J L, et al. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis[J]. Bioresource Technology, 2017, 234: 122−130. doi: 10.1016/j.biortech.2017.03.015
    [19]
    Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26−31.
    [20]
    Xiao X, White E P, Hooten M B, et al. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws[J]. Ecology, 2011, 92(10): 1887−1894. doi: 10.1890/11-0538.1
    [21]
    符利勇, 雷渊才, 孙伟, 等. 不同林分起源的相容性生物量模型构建[J]. 生态学报, 2014, 34(6):1464−1470.

    Fu L Y, Lei Y C, Sun W, el al. Development of compatible biomass models for trees from different stand origin[J]. Acta Ecologica Sinica, 2014, 34(6): 1464−1470.
    [22]
    Özçelik R, Diamantopoulou M J, Brooks J R, et al. Estimating tree bole volume using artificial neural network models for four species in Turkey[J]. Journal of Environmental Management, 2010, 91(3): 742−753.
  • Related Articles

    [1]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [2]Liu Wenlan, Sun Xuegang, Jiao Jian, Tian Qing, Cao Wenxia, Ma Shanhu. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in the soil and leaves of Tamarix austromongolica of the wetland in Lanzhou section of the Yellow River[J]. Journal of Beijing Forestry University, 2023, 45(6): 43-51. DOI: 10.12171/j.1000-1522.20220379
    [3]Wang Hui, Wang Jian, Yang Yujing, Chen Lin, Liu Shirong. Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in the Castanopsis hystrix plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 102-111. DOI: 10.12171/j.1000-1522.20220191
    [4]Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
    [5]Wu Yuxin, Yu Xinxiao, Peng Xiuwen, Zhang Xiao, Wang Yangyang, Qiu Guifu, Li Wenli, Jia Guodong. Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games[J]. Journal of Beijing Forestry University, 2022, 44(4): 66-75. DOI: 10.12171/j.1000-1522.20210295
    [6]Xiang Yunxi, Pan Ping, Chen Shengkui, Ouyang Xunzhi, Ning Jinkui, Wu Zirong, Ji Renzhan. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95-103. DOI: 10.13332/j.1000-1522.20190029
    [7]Zhang Cancan, Wu Xiaogang, Liu Bin, Shi Xuewen, Chen Fusheng, Qiu Lihong, Bu Wensheng. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19-28. DOI: 10.13332/j.1000-1522.20180383
    [8]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [9]HUANG Xiao-hui, FENG Da-lan, ZHU Heng-xing, GENG Yang-hui, CHEN Dao-jing. Composition and content of soil organic carbon in Pinus massoniana pure forest in the Three Gorges Reservoir Area of central China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 38-43.
    [10]TU Cheng-long, LIU Cong-qiang, WU Yong-feng, WANG Yi. Discussing variance of forest soil organic carbon by analysis of δ13C[J]. Journal of Beijing Forestry University, 2008, 30(5): 1-6.
  • Cited by

    Periodical cited type(36)

    1. 张瑜,徐子棋,陈光明,张志军,杨献坤,崔斌,王大中,芦贵君. 不同林草治沙模式对盐碱沙地沉积物粒度特征的影响. 中国水土保持. 2024(03): 29-33 .
    2. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    3. 董鹏,任悦,高广磊,丁国栋,张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征. 干旱区研究. 2024(08): 1354-1363 .
    4. 包润泽,张星,姚庆智. 接种褐环乳牛肝菌对樟子松及油松根际土壤细菌群落的影响. 安徽农业科学. 2023(06): 148-151+162 .
    5. 拓卫卫,范家伟,周雅洁,杨京,张延文,佟小刚,吴发启,姚冲. 毛乌素沙地樟子松林植物-土壤生态化学计量特征演变关系. 水土保持研究. 2023(06): 177-186 .
    6. 刘明慧,柳叶,任悦,高广磊,丁国栋,张英,赵珮杉,刘轩. 科尔沁沙地樟子松人工林土壤真菌共现网络及其与土壤因子的关系. 生态学报. 2023(23): 9912-9924 .
    7. 邹星晨,王欣苗,左亚凡,张泽鑫,贺康宁. 青海云杉不同演替阶段林下草本多样性特征及其环境解释. 生态学报. 2023(24): 10285-10294 .
    8. 阿拉萨,王陇,高广磊,张英,曹红雨,杜宇佳,刘雪锋. 乌兰布和沙漠沿黄段风沙土有机质和碳酸钙含量特征. 中国水土保持科学(中英文). 2022(01): 41-47 .
    9. 刘轩,赵珮杉,高广磊,赵媛媛,丁国栋,糜万林. 沙地樟子松(Pinus sylvestris var. mongolica)物候特征及其对气候的响应. 中国沙漠. 2022(02): 25-35 .
    10. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    11. 阿拉萨,高广磊,丁国栋,张英,曹红雨,杜宇佳. 土壤微生物膜生理生态功能研究进展. 应用生态学报. 2022(07): 1885-1892 .
    12. 王辉丽,于树学,郭立,梁海龙,李伟. 樟子松优树群体遗传多样性评价及指纹图谱构建. 甘肃农业大学学报. 2022(03): 103-110 .
    13. 王学林,高广磊,丁国栋,曹红雨. 沙地樟子松人工林土壤酶活性研究. 干旱区资源与环境. 2021(01): 114-120 .
    14. 徐畅,雷泽勇,周凤艳,毛禹. 沙地樟子松人工林生长对非降雨季节土壤水分的影响. 生态学杂志. 2021(01): 58-66 .
    15. 曹怡立. 章古台沙地樟子松人工林衰退的原因以及可持续经营措施. 农业与技术. 2021(03): 75-77 .
    16. 韦睿,罗玉亮,兰岚,于宏影,裴晓娜,刘亭亭. 截顶及遗传因素对樟子松无性系种子园种实差异的影响. 温带林业研究. 2021(02): 32-37 .
    17. 王雨,郭米山,高广磊,曹红雨,丁国栋,梁海军,赵珮杉. 三种外生菌根真菌对沙地樟子松幼苗生长的影响. 干旱区资源与环境. 2021(10): 135-140 .
    18. 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应. 干旱区研究. 2021(06): 1704-1712 .
    19. 黄艳章,信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响. 生态学报. 2020(03): 778-788 .
    20. 王一佩,孙美美,程然然,关晋宏,李国庆,杜盛. 黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素. 水土保持研究. 2020(03): 30-36 .
    21. 林雅超,高广磊,丁国栋,王学林,魏晓帅,王陇. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化. 生态学杂志. 2020(05): 1445-1454 .
    22. 白晓霞,艾海舰. 榆林沙地樟子松人工林土壤养分变化特征. 西部林业科学. 2020(03): 80-85 .
    23. 周磊,吴慧,王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究. 植物资源与环境学报. 2020(03): 19-25+33 .
    24. 白晓霞,鱼慧利,张静,艾海舰. 榆林沙地樟子松人工林可持续经营措施研究. 榆林学院学报. 2020(04): 46-49 .
    25. 魏晓帅,郭米山,高广磊,任悦,丁国栋,张英. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征. 北京大学学报(自然科学版). 2020(04): 710-720 .
    26. 赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征. 林业科学. 2020(09): 87-96 .
    27. 李佳文,赵珮杉,高广磊,任悦,丁国栋,张英,郭米山,魏晓帅. 陕西榆林沙区樟子松根内真菌群落结构和功能群特征. 菌物学报. 2020(10): 1854-1865 .
    28. 王家源,殷小琳,任悦,高广磊,丁国栋,张英,赵珮杉,郭米山. 毛乌素沙地樟子松外生菌根真菌多样性特征. 微生物学通报. 2020(11): 3856-3867 .
    29. 任悦,高广磊,丁国栋,张英,郭米山,曹红雨,苏敏. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报. 2019(03): 743-750 .
    30. 曲杭峰,董希斌,佘光宇,杨兰,何山. 大兴安岭蒙古栎天然次生林不同改培模式对枯落物持水性的影响. 温带林业研究. 2019(01): 31-38 .
    31. 陈宇轩,丁国栋,高广磊,张英,赵洋,王陇. 呼伦贝尔沙地风沙土有机质和碳酸钙含量特征. 中国水土保持科学. 2019(04): 104-111 .
    32. 张宁宁,谭凯亮,亢福仁,刘普灵. 毛乌素沙地樟子松林恢复过程的土壤有机质含量变化特征. 水土保持研究. 2019(05): 95-99 .
    33. 阎雄飞,曹存宏,袁小琴,张增强,郭荣,陈巧燕,刘永华. 截冠处理对种子园樟子松壮龄母树结实的影响. 北京林业大学学报. 2019(08): 48-56 . 本站查看
    34. 曹红雨,高广磊,丁国栋,张英,赵媛媛,任悦,陈宇轩,郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性. 林业科学. 2019(08): 118-127 .
    35. 阎雄飞,刘永华,冯永宏,张增强,袁小琴,陈巧燕,郭荣,曹存宏,杨涛. 2种截冠处理对种子园樟子松幼龄母树生长的影响. 农学学报. 2019(10): 42-47 .
    36. 王树力,郝玉琢,周磊,吴慧. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态. 北京林业大学学报. 2018(10): 24-33 . 本站查看

    Other cited types(22)

Catalog

    Article views (4892) PDF downloads (130) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return