Citation: | Xu Qigang, Lei Xiangdong, Guo Hong, Li Haikui, Li Yutang. Stand biomass model of Larix olgensis plantations based on multi-layer perceptron networks[J]. Journal of Beijing Forestry University, 2019, 41(5): 97-107. DOI: 10.13332/j.1000-1522.20190035 |
[1] |
罗云建. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8):129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023
Luo Y J. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023
|
[2] |
雷相东, 张会儒, 牟惠生. 东北过伐林区蒙古栎林分相容性生物量模型研究[J]. 第四纪研究, 2010, 30(3):559−565. doi: 10.3969/j.issn.1001-7410.2010.03.14
Lei X D, Zhang H R, Mu H S. Compatible stand biomass models of Mongolia oak forests in over logged forest regions, Northeast China[J]. Quaternary Sciences, 2010, 30(3): 559−565. doi: 10.3969/j.issn.1001-7410.2010.03.14
|
[3] |
程堂仁, 冯菁, 马钦彦, 等. 基于森林资源清查资料的林分生物量相容性线性模型[J]. 北京林业大学学报, 2007, 29(5):110−113. doi: 10.3321/j.issn:1000-1522.2007.05.022
Cheng T R, Feng J, Ma Q Y, et al. Linear models with compatibility of stand biomass based on the forest resource inventory data[J]. Journal of Beijing Forestry University, 2007, 29(5): 110−113. doi: 10.3321/j.issn:1000-1522.2007.05.022
|
[4] |
董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 2018, 29(9):2825−2834.
Dong L H, Li F R. Stand-level biomass estimation models for the tree layer of main forest types in East Daxing ’an Mountains, China.[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2825−2834.
|
[5] |
欧光龙, 胥辉, 王俊峰, 等. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3):101−110.
Ou G L, Xu H, Wang J F, et al. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. Journal of Beijing Forestry University, 2015, 37(3): 101−110.
|
[6] |
赵嘉诚, 李海奎. 杉木单木和林分水平地下生物量模型的构建[J]. 林业科学, 2018, 54(2):81−89.
Zhao J C, Li H K. Establishment of below-ground biomass equations for Chinese fir at tree and stand level[J]. Scientia Silvae Sinicae, 2018, 54(2): 81−89.
|
[7] |
Vahedi A A. Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran[J]. Biomass and Bioenergy, 2016, 88: 66−76. doi: 10.1016/j.biombioe.2016.03.020
|
[8] |
Sileshi G W. A critical review of forest biomass estimation models, common mistakes and corrective measures[J]. Forest Ecology and Management, 2014, 329: 237−254. doi: 10.1016/j.foreco.2014.06.026
|
[9] |
董利虎. 东北林区主要树种及林分类型生物量模型研究[D]. 哈尔滨: 东北林业大学, 2015.
Dong L H. Developing individual and stand-level biomass equations in Northeast China forest area[D]. Harbin: Northeast Forest University, 2015.
|
[10] |
Nandy S, Singh R, Ghosh S, et al. Neural network-based modelling for forest biomass assessment[J]. Carbon Management, 2017, 8(4): 305−317. doi: 10.1080/17583004.2017.1357402
|
[11] |
Stas S M, Rutishauser E, Chave J, et al. Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: comparing locally developed versus existing allometric models[J]. Forest ecology and management, 2017, 389: 27−34. doi: 10.1016/j.foreco.2016.12.010
|
[12] |
Ercanlı İ, Günlü A, Şenyurt M, et al. Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey[J]. Forest Ecosystems, 2018, 5(1): 29. doi: 10.1186/s40663-018-0149-8
|
[13] |
Özçelik R, Diamantopoulou M J, Eker M, et al. Artificial neural network models: an alternative approach for reliable aboveground Pine tree biomass prediction[J]. Forest Science, 2017, 63(3): 291−302.
|
[14] |
王轶夫, 孙玉军, 郭孝玉. 基于BP神经网络的马尾松立木生物量模型研究[J]. 北京林业大学学报, 2013, 35(2):17−21.
Wang Y F, Sun Y J, Guo X Y. Single-tree biomass modeling of Pinus massoniana based on BP neural network[J]. Journal of Beijing Forestry University, 2013, 35(2): 17−21.
|
[15] |
解雅麟, 王海燕, 雷相东. 基于3-PG模型的长白落叶松人工林生长和生物量模拟[J]. 南京林业大学学报(自然科学版), 2018, 42(1):141−148.
Xie Y L, Wang H Y, Lei X D. Growth and biomass simulation of Larix olgensis plantations based on 3-PG model[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2018, 42(1): 141−148.
|
[16] |
国家林业与草原局. 立木生物量模型及碳计量参数落叶松[S]. 北京: 中国标准出版社, 2016.
National Forestry and Grassland Administration of the People ’s Republic of China. Tree biomass models and related parameters to carbon accounting for Larix[S]. Beijing: Standards Press of China, 2016.
|
[17] |
Goodfellow I, Bengio Y, Courville A, et al. Deep learning[M]. Cambridge: MIT Press, 2016.
|
[18] |
Uzun H, Yıldız Z, Goldfarb J L, et al. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis[J]. Bioresource Technology, 2017, 234: 122−130. doi: 10.1016/j.biortech.2017.03.015
|
[19] |
Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26−31.
|
[20] |
Xiao X, White E P, Hooten M B, et al. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws[J]. Ecology, 2011, 92(10): 1887−1894. doi: 10.1890/11-0538.1
|
[21] |
符利勇, 雷渊才, 孙伟, 等. 不同林分起源的相容性生物量模型构建[J]. 生态学报, 2014, 34(6):1464−1470.
Fu L Y, Lei Y C, Sun W, el al. Development of compatible biomass models for trees from different stand origin[J]. Acta Ecologica Sinica, 2014, 34(6): 1464−1470.
|
[22] |
Özçelik R, Diamantopoulou M J, Brooks J R, et al. Estimating tree bole volume using artificial neural network models for four species in Turkey[J]. Journal of Environmental Management, 2010, 91(3): 742−753.
|
1. |
张瑜,徐子棋,陈光明,张志军,杨献坤,崔斌,王大中,芦贵君. 不同林草治沙模式对盐碱沙地沉积物粒度特征的影响. 中国水土保持. 2024(03): 29-33 .
![]() | |
2. |
田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
![]() | |
3. |
董鹏,任悦,高广磊,丁国栋,张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征. 干旱区研究. 2024(08): 1354-1363 .
![]() | |
4. |
包润泽,张星,姚庆智. 接种褐环乳牛肝菌对樟子松及油松根际土壤细菌群落的影响. 安徽农业科学. 2023(06): 148-151+162 .
![]() | |
5. |
拓卫卫,范家伟,周雅洁,杨京,张延文,佟小刚,吴发启,姚冲. 毛乌素沙地樟子松林植物-土壤生态化学计量特征演变关系. 水土保持研究. 2023(06): 177-186 .
![]() | |
6. |
刘明慧,柳叶,任悦,高广磊,丁国栋,张英,赵珮杉,刘轩. 科尔沁沙地樟子松人工林土壤真菌共现网络及其与土壤因子的关系. 生态学报. 2023(23): 9912-9924 .
![]() | |
7. |
邹星晨,王欣苗,左亚凡,张泽鑫,贺康宁. 青海云杉不同演替阶段林下草本多样性特征及其环境解释. 生态学报. 2023(24): 10285-10294 .
![]() | |
8. |
阿拉萨,王陇,高广磊,张英,曹红雨,杜宇佳,刘雪锋. 乌兰布和沙漠沿黄段风沙土有机质和碳酸钙含量特征. 中国水土保持科学(中英文). 2022(01): 41-47 .
![]() | |
9. |
刘轩,赵珮杉,高广磊,赵媛媛,丁国栋,糜万林. 沙地樟子松(Pinus sylvestris var. mongolica)物候特征及其对气候的响应. 中国沙漠. 2022(02): 25-35 .
![]() | |
10. |
张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
![]() | |
11. |
阿拉萨,高广磊,丁国栋,张英,曹红雨,杜宇佳. 土壤微生物膜生理生态功能研究进展. 应用生态学报. 2022(07): 1885-1892 .
![]() | |
12. |
王辉丽,于树学,郭立,梁海龙,李伟. 樟子松优树群体遗传多样性评价及指纹图谱构建. 甘肃农业大学学报. 2022(03): 103-110 .
![]() | |
13. |
王学林,高广磊,丁国栋,曹红雨. 沙地樟子松人工林土壤酶活性研究. 干旱区资源与环境. 2021(01): 114-120 .
![]() | |
14. |
徐畅,雷泽勇,周凤艳,毛禹. 沙地樟子松人工林生长对非降雨季节土壤水分的影响. 生态学杂志. 2021(01): 58-66 .
![]() | |
15. |
曹怡立. 章古台沙地樟子松人工林衰退的原因以及可持续经营措施. 农业与技术. 2021(03): 75-77 .
![]() | |
16. |
韦睿,罗玉亮,兰岚,于宏影,裴晓娜,刘亭亭. 截顶及遗传因素对樟子松无性系种子园种实差异的影响. 温带林业研究. 2021(02): 32-37 .
![]() | |
17. |
王雨,郭米山,高广磊,曹红雨,丁国栋,梁海军,赵珮杉. 三种外生菌根真菌对沙地樟子松幼苗生长的影响. 干旱区资源与环境. 2021(10): 135-140 .
![]() | |
18. |
李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应. 干旱区研究. 2021(06): 1704-1712 .
![]() | |
19. |
黄艳章,信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响. 生态学报. 2020(03): 778-788 .
![]() | |
20. |
王一佩,孙美美,程然然,关晋宏,李国庆,杜盛. 黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素. 水土保持研究. 2020(03): 30-36 .
![]() | |
21. |
林雅超,高广磊,丁国栋,王学林,魏晓帅,王陇. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化. 生态学杂志. 2020(05): 1445-1454 .
![]() | |
22. |
白晓霞,艾海舰. 榆林沙地樟子松人工林土壤养分变化特征. 西部林业科学. 2020(03): 80-85 .
![]() | |
23. |
周磊,吴慧,王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究. 植物资源与环境学报. 2020(03): 19-25+33 .
![]() | |
24. |
白晓霞,鱼慧利,张静,艾海舰. 榆林沙地樟子松人工林可持续经营措施研究. 榆林学院学报. 2020(04): 46-49 .
![]() | |
25. |
魏晓帅,郭米山,高广磊,任悦,丁国栋,张英. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征. 北京大学学报(自然科学版). 2020(04): 710-720 .
![]() | |
26. |
赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征. 林业科学. 2020(09): 87-96 .
![]() | |
27. |
李佳文,赵珮杉,高广磊,任悦,丁国栋,张英,郭米山,魏晓帅. 陕西榆林沙区樟子松根内真菌群落结构和功能群特征. 菌物学报. 2020(10): 1854-1865 .
![]() | |
28. |
王家源,殷小琳,任悦,高广磊,丁国栋,张英,赵珮杉,郭米山. 毛乌素沙地樟子松外生菌根真菌多样性特征. 微生物学通报. 2020(11): 3856-3867 .
![]() | |
29. |
任悦,高广磊,丁国栋,张英,郭米山,曹红雨,苏敏. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报. 2019(03): 743-750 .
![]() | |
30. |
曲杭峰,董希斌,佘光宇,杨兰,何山. 大兴安岭蒙古栎天然次生林不同改培模式对枯落物持水性的影响. 温带林业研究. 2019(01): 31-38 .
![]() | |
31. |
陈宇轩,丁国栋,高广磊,张英,赵洋,王陇. 呼伦贝尔沙地风沙土有机质和碳酸钙含量特征. 中国水土保持科学. 2019(04): 104-111 .
![]() | |
32. |
张宁宁,谭凯亮,亢福仁,刘普灵. 毛乌素沙地樟子松林恢复过程的土壤有机质含量变化特征. 水土保持研究. 2019(05): 95-99 .
![]() | |
33. |
阎雄飞,曹存宏,袁小琴,张增强,郭荣,陈巧燕,刘永华. 截冠处理对种子园樟子松壮龄母树结实的影响. 北京林业大学学报. 2019(08): 48-56 .
![]() | |
34. |
曹红雨,高广磊,丁国栋,张英,赵媛媛,任悦,陈宇轩,郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性. 林业科学. 2019(08): 118-127 .
![]() | |
35. |
阎雄飞,刘永华,冯永宏,张增强,袁小琴,陈巧燕,郭荣,曹存宏,杨涛. 2种截冠处理对种子园樟子松幼龄母树生长的影响. 农学学报. 2019(10): 42-47 .
![]() | |
36. |
王树力,郝玉琢,周磊,吴慧. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态. 北京林业大学学报. 2018(10): 24-33 .
![]() |