• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Xiaohong, Zhang Huiru. Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release[J]. Journal of Beijing Forestry University, 2019, 41(5): 56-65. DOI: 10.13332/j.1000-1522.20190046
Citation: Zhang Xiaohong, Zhang Huiru. Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release[J]. Journal of Beijing Forestry University, 2019, 41(5): 56-65. DOI: 10.13332/j.1000-1522.20190046

Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release

More Information
  • Received Date: January 16, 2019
  • Revised Date: February 25, 2019
  • Available Online: April 29, 2019
  • Published Date: April 30, 2019
  • ObjectiveCrop tree release (CTR) based on single tree is an important way to realize close-to-nature forest management. In order to reveal influences of CTR on the vertical structure of natural secondary forests, natural secondary Quercus mongolica forest in the northern Changbai Mountains was used as research objects, to investigate the response of forest stand structure and single-wood growth to the different intensity tending, which can provide basic support for developing scientific and rational management.
    Method16 sample plots of 0.09 ha (30 m×30 m) were set up in the Jilin Wangqing Forestry Bureau in August 2013, to carry out crop tree release and thinning test. According to the thinning intensity, 4 treatments were set as: weak (5%), mild (10%), moderate (20%) and control, each treatment had 4 replicates. All sample plots were resurveyed in 2016. The stands were divided into upper, middle and lower storeys according to the canopy competition height (CCH) in stand. The effects of different tending thinning intensity on each forest storey height, tree species composition, competition and growth were analyzed.
    Result(1) the CCH of upper, middle and lower storeys was 15.27−16.12 m, 8.76−9.65 m and 2.95−3.37 m, respectively. Thinning increased the height of upper and middle forest storeys, upper forest storey height was increased from 15.42 to 17.21 by moderate thinning, which was significantly higher than other treatments, while the height of the lower forest storey remained basically unchanged. (2) Thinning adjusted the proportion of tree species in the upper and middle forest storeys. the proportion of Betula platyphylla was decreased while that of Quercus mongolica was increased in upper forest storeys, and the proportion of Quercus mongolica increased with the increase of thinning intensity. The proportion of other wood decreased while that of Pinus koraiensis increased. (3) The average DBH of upper storeys was improved under moderate thinning, with an increase of 0.57 cm, but decreased under other treatments. The average DBH of middle storey was only improved under mild thinning. Changes on average DBH of lower storey was opposite to that of upper forest storey. The proportion of upper and middle forest storeys of forest stands increased. The proportion of forest storeys in the weak, mild and moderate thinned sample plot increased by 1.92%, 11.52% and 13.15%, respectively. (4) Thinning significantly reduced the competition index of forest trees in each forest storey. The lower forest storey had the most positive response to crop tree tending and thinning. The forest competition index of lower storeys by weak thinning decreased from 0.634 to 0.455, which was the most significant. (5) DBH periodic growth rate and volume periodic growth rate of forest storey decreased with the increase of the height of forest storey. The DBH periodic growth rates of the upper, middle and lower forest storey were 1.22%−1.96%, 1.94%−2.59%, 4.02%−8.17%, respectively. The volume growth rate were 1.74%−4.10%, 3.50%−5.14%, 10.12%−18.97%, respectively.
    ConclusionCTR can significantly affect the growth and structure of different forest storeys of secondary Quercus mongolica forest. On the whole, moderate thinning (about 20% of thinning intensity) is suitable crop tree thinning intensity for secondary Quercus mongolica forest in study area. The specific tending methods and follow-up time are still based on long-term observations of forest stand dynamics.
  • [1]
    樊后保, 臧润国, 李德志. 蒙古栎种群天然更新的研究[J]. 生态学杂志, 1996, 15(3):15−20.

    Fan H B, Zang R G, Li D Z. Natural regeneration of Mongolian oak population[J]. Chinese Journal of Ecology, 1996, 15(3): 15−20.
    [2]
    王文权. 辽宁森林资源.北京[M]. 北京: 中国林业出版社, 2007.

    Wang W Q. Forest resources in Liaoning Province[M]. Beijing: China Forestry Publishing House, 2007 .
    [3]
    何友均, 梁星云, 覃林, 等. 南亚热带马尾松红椎人工林群落结构、物种多样性及基于自然的森林经营[J]. 林业科学, 2013, 49(4):24−33.

    He Y J, Liang X Y, Qin L, et al. Community structure, species diversity of Pinus massoniana and Castanopsis hystrix plantation and the nature-based forest management in the southern subtropical China[J]. Scientia Silvae Sinicae, 2013, 49(4): 24−33.
    [4]
    Demirc M, Bettinger P. Using mixed integer multi-objective goal programming for stand tending block designation: a case study from Turkey[J]. Forest Policy and Economics, 2015, 55: 28−36. doi: 10.1016/j.forpol.2015.03.007
    [5]
    盛炜彤. 我国应将天然次生林的经营放在重要位置[J]. 林业科技通讯, 2016(2):10−13.

    Sheng W T. China should put an important position for the management of natural secondary forests[J]. Forest Science and Technology, 2016(2): 10−13.
    [6]
    Miller G W, Stringer J W, Mercker D C. Technical guide to crop tree release in hardwood forests[R/OL]//The University of Tennessee Agricultural Extension Service Publication Series. Knoxville: University of Tennessee, 2007: 1−24. [2018−10−10]. http://trace.tennessee.edu/utk_agexfores/19.
    [7]
    陆元昌.近自然森林经营理论与实践[M]. 北京: 科学出版社, 2006.

    Lu Y C. Theory and practice of close-to-nature forest management[M]. Beijing: Science Press, 2006.
    [8]
    Healy W M, Lewis A M, Boose E F. Variation of red oak acorn production[J]. Forest Ecology and Management, 1999, 116(1−3): 1−11. doi: 10.1016/S0378-1127(98)00460-5
    [9]
    宁金魁, 陆元昌, 赵浩彦, 等. 北京西山地区油松人工林近自然化改造效果评价[J]. 东北林业大学学报, 2009, 37(7):42−44. doi: 10.3969/j.issn.1000-5382.2009.07.015

    Ning J K, Lu Y C, Zhao H Y, et al. Assessment on close-to- nature transformation of Pinus tabuliformis plantations in Xishan Region, Beijing[J]. Journal of Northeast Forestry University, 2009, 37(7): 42−44. doi: 10.3969/j.issn.1000-5382.2009.07.015
    [10]
    王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014, 50(10):67−73.

    Wang Y X, Zhang S G, Lu Y C, et al. Initial effects of crop tees growth after crop tree release on Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2014, 50(10): 67−73.
    [11]
    李婷婷, 陆元昌, 姜俊, 等. 马尾松人工林森林经营模式评价[J]. 西北林学院学报, 2015, 30(1):164−171. doi: 10.3969/j.issn.1001-7461.2015.01.27

    Li T T, Lu Y C, Jiang J, et al. Assessment of forest management model of Pinus massoniana plantation[J]. Journal of Northwest Forestry University, 2015, 30(1): 164−171. doi: 10.3969/j.issn.1001-7461.2015.01.27
    [12]
    张晓红, 张会儒, 卢军, 等. 美国目标树经营体系及其经营效果研究进展[J]. 世界林业研究, 2016, 29(2):91−96.

    Zhang X H, Zhang H R, Lu J, et al. Crop tree release in United States and progress on management effect[J]. World Forestry Research, 2016, 29(2): 91−96.
    [13]
    李俊清, 牛树奎, 刘艳红.森林生态学[M]. 3版.北京: 高等教育出版社.2017.

    Li J Q, Niu S K, Liu Y H. Forest ecology[M]. 3rd ed. Beijing: Higher Education Press, 2017.
    [14]
    臧润国, 杨彦承, 蒋有绪. 海南岛霸王岭热带山地雨林群落结构及树种多样性特征的研究[J]. 植物生态学报, 2001, 25(3):270−275. doi: 10.3321/j.issn:1005-264X.2001.03.003

    Zang R G, Yang Y C, Jiang Y X. Community structure and tree species diversity characteristics in a tropical montane rain forest in bawangling nature reserve, Hainan Island[J]. Acta Phytoecologica Sinica, 2001, 25(3): 270−275. doi: 10.3321/j.issn:1005-264X.2001.03.003
    [15]
    惠刚盈, Gadow K V, 胡艳波, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y, Gadow K V, Hu Y B, et al. Structure based forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [16]
    Latham P A, Zuuring H R, Coble D W. A method for quantifying vertical forest structure[J]. Forest Ecology and Management, 1998, 104(1): 157−170.
    [17]
    Ishii H T, Tanabe S, Hiura T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems[J]. Forest Science, 2004, 50(3): 342−355.
    [18]
    郑景明, 张春雨, 周金星, 等. 云蒙山典型森林群落垂直结构研究[J]. 林业科学研究, 2007, 20(6):768−774. doi: 10.3321/j.issn:1001-1498.2007.06.006

    Zheng J M, Zhang C Y, Zhou J X, et al. Study on vertical structue of forest communities in Yunmengshan[J]. Forest research, 2007, 20(6): 768−774. doi: 10.3321/j.issn:1001-1498.2007.06.006
    [19]
    玉宝, 张秋良, 王立明. 中幼龄兴安落叶松过伐林垂直结构综合特征[J]. 林业科学, 2015, 51(1):132−139.

    Yu B, Zhang Q L, Wang L M. Comprehensive characteristics of the vertical structure of middle young over cutting forest of Larix gmelinii[J]. Scientia Silvae Sinicae, 2015, 51(1): 132−139.
    [20]
    惠刚盈, 胡艳波, 赵中华, 等. 基于交角的林木竞争指数[J]. 林业科学, 2013, 49(6):68−73.

    Hui G Y, Hu Y B, Zhao Z H, et al. Forest competition index based on intersection angle[J]. Scientia Silvae Sinicae, 2013, 49(6): 68−73.
    [21]
    惠刚盈. 基于相邻木关系的林分空间结构参数应用研究[J]. 北京林业大学学报, 2013, 35(4):l−9.

    Hui G Y. Studies on the application of stand spatial structure parameters based on the relationship of neighborhood trees[J]. Journal of Beijing Forestry University, 2013, 35(4): l−9.
    [22]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
    [23]
    吕勇, 臧颢, 万献军, 等. 基于林层指数的青椆混交林林层结构研究[J]. 林业资源管理, 2012(3):81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018

    Lü Y, Zang H, Wan X J, et al. Storey structure study of Cyclobalanopsis myrsinaefolia mixed stand based on storey index[J]. Forest Resources Management, 2012(3): 81−84. doi: 10.3969/j.issn.1002-6622.2012.03.018
    [24]
    陈科屹, 张会儒, 雷相东, 等. 云冷杉过伐林垂直结构特征分析[J]. 林业科学研究, 2017, 30(3):450−459.

    Chen K Y, Zhang H R, Lei X D, et al. Analysis of vertical structure characteristics for spruce-fir over-cutting forest[J]. Forest Research, 2017, 30(3): 450−459.
    [25]
    马履一, 李春义, 王希群, 等. 不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J]. 林业科学, 2007, 43(5):1−9. doi: 10.3321/j.issn:1001-7488.2007.05.001

    Ma L Y, Li C Y, Wang X Q, et al. Effects of thinning on growth and diversity of undergrowth of Pinus tabuliformis plantation in Beijing Mountainous Areas[J]. Scientia Silvae Sinicae, 2007, 43(5): 1−9. doi: 10.3321/j.issn:1001-7488.2007.05.001
    [26]
    段劼, 马履一, 贾黎明, 等. 抚育间伐对侧柏人工林及林下植被生长的影响[J]. 生态学报, 2010, 30(6):1431−1441.

    Duan J, Ma L Y, Jia L M, et al. Effects of thinning on growth of Platycladus orientalis plantation and undergrowth vegetations[J]. Acta Ecologica Sinica, 2010, 30(6): 1431−1441.
    [27]
    徐金良, 毛玉明, 郑成忠, 等. 抚育间伐对杉木人工林生长及出材量的影响[J]. 林业科学研究, 2014, 27(1):99−107.

    Xu J L, Mao Y M, Zheng C Z, et al. Effect of thinning on growth and timber qutturn in Cunninghamia lanceolate plantation[J]. Forest Research, 2014, 27(1): 99−107.
    [28]
    尤文忠, 赵刚, 张慧东, 等. 抚育间伐对蒙古栎次生林生长的影响[J]. 生态学报, 2015, 35(1):56−64.

    You W Z, Zhao G, Zhang H D, et al. Effects of thinning on growth of mongolian oak (Quercus mongolica) secondary forests[J]. Acta Ecologica Sinica, 2015, 35(1): 56−64.
    [29]
    Miller G W, Kochenderfer J N, Fekedulgn D B. Influence of individual reserve trees on nearby reproduction in two-aged appalachian hardwood stands[J]. Forest Ecology and Management, 2006, 224(3): 241−251. doi: 10.1016/j.foreco.2005.12.035
    [30]
    陆元昌, 张守攻, 雷相东, 等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009, 22(1):20−27.

    Lu Y C, Zhang S G, Lei X D, et al. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009, 22(1): 20−27.
    [31]
    Gary D L. Ten year growth response of red and white oak crop trees to intensity of crown release[R]//Walrop T A. General technical report (SRS-20). Asheville: Department of Agriculture, Forestry Service, Southern Research Station, 1998: 163−167.
    [32]
    Lin Y C, Chang L W, Yang K C, et al. Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation[J]. Ocecologia, 2011, 165(1): 175−184. doi: 10.1007/s00442-010-1718-x
    [33]
    Shchuler T M. Crop tree release improves competitiveness of northern red oak growing in association with black cherry[J]. Northern Journal of Applied Forestry, 2006, 23(2): 77−82.
    [34]
    Ward J S. Intensity of precommercial crop tree release increases diameter growth and survival of upland oaks[J]. Canadian Journal of Forest Research, 2009, 39(1): 118−130. doi: 10.1139/X08-165
    [35]
    Ward J S. Precommercial crop tree release increases upper canopy persistence and diameter growth of oak saplings[J]. Northern Journal of Applied Forestry, 2013, 30(4): 156−163. doi: 10.5849/njaf.13-017
    [36]
    Leak W B. Smith M L. Long-term species and structural changes after cleaning young even-aged northern hardwoods in New Hampshire, USA[J]. Forest Ecology and Management, 1997, 95(1): 11−20. doi: 10.1016/S0378-1127(97)00011-X
    [37]
    Lamson N I. Precommercial thinning increases diameter growth of Appalachian hardwood stump sprouts[J]. Southern Journal of Applied Forestry, 1983, 7(2): 93−97.
  • Related Articles

    [1]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Yu Haiou, Zheng Jun, Zhang Tianxiang. DBH class structure and arbor biomass of Juglans mandshurica secondary forest[J]. Journal of Beijing Forestry University, 2022, 44(1): 29-37. DOI: 10.12171/j.1000-1522.20200348
    [2]Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. DOI: 10.12171/j.1000-1522.20200065
    [3]Chen Bei-bei, Wang Kai, Ni Rui-qiang, Cheng Yan-xia. Composition and spatial pattern of tree seedlings in a coniferous and broadleaved mixed forest in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 68-75. DOI: 10.13332/j.1000-1522.20170370
    [4]SUN Yue, XIA Fu-cai, HE Huai-jiang, LIU Bao-dong, WANG Ge-rong, LI Liang. Community structure features of the larch-birch secondary forest on the northeastern slope of Changbai Mountain, Northeast China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 28-38. DOI: 10.13332/j.1000-1522.20160088
    [5]WANG Xin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, WANG Guo-hang, DENG Hong-ping. Community structure and population regeneration of an endangered plant, Thuja sutchuenensis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 28-37. DOI: 10.13332/j.1000-1522.20160028
    [6]L&#xDC, Xun, YANG Shuang-bao, LIU Wen-zhen, GUO Xiao-long, LI An-min, YUAN Yi-chao. Analysis of spatial structure characteristics based on diameter class of trees in primeval Quercus aliena var. acuteserrata community in the forest area of Xiaolong Mountain, Gansu Province.[J]. Journal of Beijing Forestry University, 2015, 37(5): 11-18. DOI: 10.13332/j.1000-1522.20140238
    [7]LUO Zong-shi, XIANG Cheng-hua, ZHANG Lu, XIE Da-jun, LUO Xiao-hua. Spatial distribution of fine roots and underground competition between Chinese prickly ash (Zanthoxylum bungenum) and weeds in Chinese prickly ash plantation[J]. Journal of Beijing Forestry University, 2010, 32(2): 86-91.
    [8]HAN Lu, WANG Hai-zhen, PENG Jie, LIANG Ji-ye, MA Chun-hui. Size-class structure and distribution pattern of Populus euphratica Oliv. in different habitats.[J]. Journal of Beijing Forestry University, 2010, 32(1): 7-12.
    [9]MAO Lei, , WANG Dong-mei, YANG Xiao-hui, YU Hong. Spatial patterns of young Pinus sylvestris var. mongolica saplings and their regeneration analysis in different stands of Inner Mongolia, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 71-77.
    [10]MA Yu-fei, LI Jun-qing. Population structure of Davidia involucrate in Mt.Seven-sister Nature Reserve of central China’s Hubei Province[J]. Journal of Beijing Forestry University, 2005, 27(3): 12-16.
  • Cited by

    Periodical cited type(62)

    1. 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型. 林业科学. 2025(01): 57-69 .
    2. 衣娜娜,毕力格,史金丽,蔡敏,许志丽,郑凤杰,丽娜. 内蒙古大兴安岭飞机冷云增雨潜势预报模型. 干旱区研究. 2025(03): 409-419 .
    3. 王伟武,伏添乐,陈欢. 基于PLUS-InVEST模型的长三角城市群碳储量时空演变与预测. 环境科学. 2025(04): 1937-1950 .
    4. 徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
    5. 张圆圆,龙勤. 云南省森林净碳储量估算及影响因素分析——基于碳源和碳汇双重角度. 绿色科技. 2024(01): 227-231 .
    6. 汪宗顺,张海鹏,岳超,杨红强,张寒. 造林增汇是实现碳中和的成本有效途径吗?——以西北地区为例. 自然资源学报. 2024(03): 731-748 .
    7. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    8. 杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
    9. 于鲁冀,张亚慧,樊雷,王莉,刘莹莹. 河南省森林固碳量与碳汇价值评估. 郑州大学学报(工学版). 2024(03): 7-13 .
    10. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    11. 李林,赵毅,温智峰,刘佳润,魏识广,周景钢,冯嘉谊. 南亚热带常绿阔叶林地上碳储量空间分布特征及其影响因素. 生态学报. 2024(11): 4687-4697 .
    12. 马振华. 基于第7至9次森林资源清查的宁夏森林碳储量动态变化特征. 陕西林业科技. 2024(03): 39-45 .
    13. 郭同方,吴水荣,张超,苏秦. 重点国有林区森林碳储量动态变化及增汇策略分析——以龙江森工为例. 江西农业大学学报. 2024(03): 582-596 .
    14. 贺晨瑞,庞丽峰,谭炳香,黄逸飞,孙学霞. 基于遥感的北京市森林地上碳储量监测. 西北林学院学报. 2024(03): 162-170+265 .
    15. Zhencan ZHENG,Liuwen ZHUANG,Guofang MIAO,Han LIU,Zhiqiang CHENG,Wenyu LI,Rong SHANG,Peng GONG,Jing Ming CHEN. Elevational distribution of forests and its spatiotemporal dynamics in subtropical China from 2000 to 2019. Science China Earth Sciences. 2024(08): 2563-2582 .
    16. 郑振灿,庄留文,缪国芳,刘涵,程志强,李纹宇,商荣,宫鹏,陈镜明. 中国亚热带地区2000~2019年森林海拔分布特征及其时空动态. 中国科学:地球科学. 2024(08): 2604-2624 .
    17. 张亮. 韶关市森林植被碳储量与碳密度动态研究. 林业与环境科学. 2024(05): 88-94 .
    18. 范彩慧,段成波,龙德增,赵润华. 保山市森林生物质碳储量分析. 绿色科技. 2024(20): 68-73 .
    19. 胡兴波,张月,胡长江,李慧波,王光鑫. 西南地区常见林木的固碳经济效益分析. 农村科学实验. 2024(23): 114-116 .
    20. 曹爱平,罗雷,王晓荣,徐立,郑晓敏. 基于湖北第五次森林资源普查数据的森林碳储量研究. 湖北林业科技. 2024(06): 1-6 .
    21. 王媛媛,刘可欣,张湘婕,王艺璇,赵俊玮,徐连杰,郭婷婷,王天意,任志彬,代新竹. 城市森林碳汇估算计量——以长春市为例. 中国城市林业. 2024(06): 116-122 .
    22. 张翔,刘洋,玉山,苏日娜,阿茹汗. 基于无人机激光雷达和多光谱数据的森林树高提取方法研究. 森林工程. 2023(01): 29-36 .
    23. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    24. 陈宏福,韦体,敏正龙,妥永华,高丹丹,蔡勇,杨具田,白日霞,郭鹏辉. 黄河上游太子山国家级自然保护区森林碳储量及碳增汇潜力研究. 西北民族大学学报(自然科学版). 2023(01): 63-70 .
    25. 朱建华,田宇,李奇,刘华妍,郭学媛,田惠玲,刘常富,肖文发. 中国森林生态系统碳汇现状与潜力. 生态学报. 2023(09): 3442-3457 .
    26. 张煜星,王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力. 林业科学. 2023(03): 54-64 .
    27. 简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学. 2023(03): 12-20 .
    28. 刘川. 利用森林资源一类清查数据计算活立木蓄积量的方法及应用研究. 山东林业科技. 2023(03): 69-72 .
    29. 冯源,王连晶. 县域尺度乔木林碳储量及碳汇特征分析——以马关县为例. 西部林业科学. 2023(03): 152-159 .
    30. 罗佩文,熊小雨,刘冰琳. 基于机器学习和生长预测的森林固碳分析和多目标规划管理策略. 科技风. 2023(19): 156-159 .
    31. 汤浩藩,季巍,周卫平,欧阳希,王华,张文晶,许彦红. 主要乔木树种碳储量与碳密度分布特征——以昆明市海口林场为例. 南方林业科学. 2023(03): 6-10+29 .
    32. 王迎辉,孙浩然,解华臻,张岩,卢振生. 小型树苗扦插机的设计. 南方农机. 2023(22): 35-37+57 .
    33. 江晓雨,刘康桢,徐帅. 基于LCA的合肥滨湖国家森林公园的环境评估. 合肥学院学报(综合版). 2023(05): 70-76 .
    34. 李放,孙红召,黄新峰,曹文昱,冯东阳,冯瑞琦. 基于河南省第九次森林资源清查的乔木林碳储量研究. 绿色科技. 2023(17): 151-157 .
    35. 陈晨,时军霞,刘光武. 河南省乔木林碳储量和碳密度研究. 安徽农业科学. 2023(22): 108-111 .
    36. 韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
    37. 朱昳橙. 海寨林场主要乔木树种碳储量和碳密度特征研究. 宁夏农林科技. 2023(12): 24-28 .
    38. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析. 资源与产业. 2022(01): 15-25 .
    39. 徐明锋,苏永新,龚益广,王锋,张少杰,何春梅. 粤西桉阔林乔木层碳密度及其影响因子研究. 林业与环境科学. 2022(01): 1-8 .
    40. 张全斌,周琼芳. “双碳”目标下中国能源CO_2减排路径研究. 中国国土资源经济. 2022(04): 22-30 .
    41. 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学. 2022(02): 32-41 .
    42. 尹海龙,张乃暄,许中旗. 冀北坝上及坝下地区华北落叶松林土壤碳储量的比较. 林业与生态科学. 2022(02): 164-168 .
    43. 刘华超,任春颖,王宗明,张柏. 大兴安岭生态功能区生态系统服务功能动态及权衡协同关系研究. 生态与农村环境学报. 2022(05): 587-598 .
    44. 胡忠宇,苏建兰. 森林植被碳储量研究综述与展望. 农业与技术. 2022(12): 58-62 .
    45. 肖水寒,张驭骁,张佳栋,周甲佳. 基于碳存储量预测的森林经营计划决策模型. 科学技术创新. 2022(23): 165-168 .
    46. Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
    47. 曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
    48. 周静,吕晓琪. 北京大兴区森林植被碳储量计算及价值分析. 绿色科技. 2022(16): 49-52 .
    49. 薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
    50. 雷海清,孙高球,郑得利. 温州市森林生态系统碳储量研究. 南京林业大学学报(自然科学版). 2022(05): 20-26 .
    51. 肖君. 福建省天然乔木林碳储量动态变化及增汇策略. 南京林业大学学报(自然科学版). 2022(05): 27-32 .
    52. 范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 . 本站查看
    53. 张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 . 本站查看
    54. 陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
    55. 荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
    56. 王飞平,张加龙. 基于碳卫星的森林碳储量估测研究综述. 世界林业研究. 2022(06): 30-35 .
    57. 侯瑞萍,陈健,夏朝宗,宋佳庚,黄翔,郑芊卉,安天宇,郝月兰. 2020年京津冀地区林地和其他生物质碳汇量研究. 林业资源管理. 2022(05): 42-52 .
    58. 郭学媛,朱建华,刘华妍,田惠玲,李春蕾,刘常富,肖文发. 林业活动对区域森林生物量碳源汇格局的影响——以南平市为例. 生态学报. 2022(23): 9548-9559 .
    59. 侯瑞萍,夏朝宗,陈健,郑芊卉,李海奎,黄金金,黄翔,邓继峰,韩旭,安天宇,郝月兰,苟丽晖. 长江经济带林地和其他生物质碳储量及碳汇量研究. 生态学报. 2022(23): 9483-9498 .
    60. 韩光荣,赵琦,邵长城. 优化施肥对樟子松幼苗生长和抗逆生理的影响. 林业调查规划. 2022(06): 49-54 .
    61. 刘丽,彭琛. 宁强县森林资源变化分析. 绿色科技. 2021(19): 97-99 .
    62. 张峰,彭祚登. 北京市森林碳储量和碳汇经济价值研究. 林业资源管理. 2021(06): 52-58 .

    Other cited types(41)

Catalog

    Article views (1860) PDF downloads (101) Cited by(103)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return