• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Junhe, Liu Chang, Niu Shihui, Li Wei. Regulatory effect of stem cambium gibberellin on plant growth and development[J]. Journal of Beijing Forestry University, 2019, 41(7): 68-74. DOI: 10.13332/j.1000-1522.20190107
Citation: Yang Junhe, Liu Chang, Niu Shihui, Li Wei. Regulatory effect of stem cambium gibberellin on plant growth and development[J]. Journal of Beijing Forestry University, 2019, 41(7): 68-74. DOI: 10.13332/j.1000-1522.20190107

Regulatory effect of stem cambium gibberellin on plant growth and development

More Information
  • Received Date: February 27, 2019
  • Revised Date: May 29, 2019
  • Available Online: July 04, 2019
  • Published Date: June 30, 2019
  • Objective Gibberellin (GAs) is an important plant hormone, which has a wide range of regulatory effects on plant growth and development. In this paper, the regulatory role of gibberellin in stem cambium in plant growth and development was studied, providing reference for elucidation of the transport and regulatory role of source active GAs in plants.
    Method In this study, the content of active GAs in stem cambium was specifically down-regulated by transgenic method to explore its regulatory effect on the growth and development of plant stems, leaves and roots. On this basis, 35S:: PtGA20ox and 35S:: PtGA2ox1 transgenic tobacco strains were used as scions and rootstocks respectively for micrografting and application of external GAs, to explore the transport characteristics of endogenous and exogenous active GAs in tobacco.
    Result The results showed that the content of GAs in the stem of PtGA2ox1 transgenic plants mediated by the specific promoter LMX5 in the stem cambium was significantly lower than that in the wild type, while there was no significant change in the content of GAs in the leaves and roots. By observing paraffin sections, we found that the decrease of GAs content in stem cambium significantly delayed the development of stem xylem and inhibited the growth of leaf and lateral root. The analysis of micrografting of different transgenic lines shows that the exogenous GAs can restore the phenotype caused by the lack of stem cambium GAs, while the endogenous active GAs cannot be transported freely or restore the phenotype.
    Conclusion Stem cambium GAs content is not only an important role in the development of stem xylem, and development of the growth of leaves and adventitious roots also have regulation function, the method of using micro grafting reactive GAs is verified in transport mechanism in the tobacco, it has been clear about the GAs in the regulating plant tissue development, for the future GAs thus lay a foundation for the application in the trees.
  • [1]
    Stefano G, Annalisa R, Julie M, et al. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1[J]. The Plant Journal, 2010, 61(2): 312−323.
    [2]
    Mikihiro O, Atsushi H, Yukika Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination[J]. The Plant Cell, 2003, 15(7): 1591−1604. doi: 10.1105/tpc.011650
    [3]
    Bleecker A B, Schuette J L, Kende H. Anatomical analysis of growth and developmental patterns in the internode of deepwater rice[J]. Planta, 1986, 169(4): 490−497. doi: 10.1007/BF00392097
    [4]
    van der Knaap E, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiology, 2000, 122(3): 695−704. doi: 10.1104/pp.122.3.695
    [5]
    季兰, 杨仁崔. 水稻茎伸长生长与植物激素[J]. 植物学报, 2002, 19(1):109−115. doi: 10.3969/j.issn.1674-3466.2002.01.016

    Ji L, Yang R C. Rice stem elongation and plant hormones[J]. Chinese Bulletin of Botany, 2002, 19(1): 109−115. doi: 10.3969/j.issn.1674-3466.2002.01.016
    [6]
    Stamm P, Kumar P P. Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light[J]. Plant Cell Reports, 2013, 32(6): 759−769. doi: 10.1007/s00299-013-1406-5
    [7]
    李哲馨, 钮世辉, 高琼, 等. 赤霉素调控木质部发育的细胞学研究[J]. 北京林业大学学报, 2014, 36(2):68−73.

    Li Z X, Niu S H, Gao Q, et al. Cytological study of gibberellin regulated xylem development[J]. Journal of Beijing Forestry University, 2014, 36(2): 68−73.
    [8]
    Ragni L, Nieminen K, Pacheco-Villalobos D, et al. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion[J]. Plant Cell, 2011, 23(4): 1322−1336. doi: 10.1105/tpc.111.084020
    [9]
    Niu S, Li Z, Yuan H, et al. Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco[J]. Journal of Experimental Botany, 2013, 64(11): 3411−3424. doi: 10.1093/jxb/ert186
    [10]
    钮世辉, 李伟, 陈晓阳. 赤霉素对根尖径向生长的调节作用研究[J]. 北京林业大学学报, 2013, 35(3):71−76.

    Niu S H, Li W, Chen X Y. Negative regulation of gibberellin on root tip diameter[J]. Journal of Beijing Forestry University, 2013, 35(3): 71−76.
    [11]
    Niu S, Gao Q, Li Z, et al. The role of gibberellin in the CBF1-mediated stress-response pathway[J]. Plant Molecular Biology Reporter, 2014, 32(4): 852−863. doi: 10.1007/s11105-013-0693-x
    [12]
    高琼, 钮世辉, 李伟, 等. 低温胁迫对赤霉素代谢的调控研究[J]. 北京林业大学学报, 2014, 36(6):135−141.

    Gao Q, Niu S H, Li W, et al. Regulation of low temperature stress on gibberellin metabolism[J]. Journal of Beijing Forestry University, 2014, 36(6): 135−141.
    [13]
    魏佳玉, 张素芳, 刘紫怡, 等. 长白落叶松形成层差异表达的miRNA[J]. 东北林业大学学报, 2018, 46(6):14−18. doi: 10.3969/j.issn.1000-5382.2018.06.003

    Wei J Y, Zhang S F, Liu Z Y, et al. Differentially expressed miRNA of Larix olgensis cambium[J]. Journal of Northeast Forestry University, 2018, 46(6): 14−18. doi: 10.3969/j.issn.1000-5382.2018.06.003
    [14]
    张凤娟. 外源GA对垂柳茎部次生木质部和次生韧皮部发生的影响(简报)[J]. 河北农业技术师范学院学报, 1997, 11(4):74−76.

    Zhang F J. Effects of external GA on second-xylem and second-phloem of weeping willow stems (bulletin)[J]. Journal of Hebei Agrotechnical Teachers College, 1997, 11(4): 74−76.
    [15]
    刘畅. 形成层赤霉素含量对烟草发育的影响[D].北京: 北京林业大学, 2016.

    Liu C. Roles of the cambial GA concentration on tobacco development[D]. Beijing: Beijing Forestry University, 2016.
    [16]
    Regnault T, Davière J M, Wild M, et al. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis[J/OL]. Nature Plants. 2015, 1: 15073 [2019−01−21]. https://doi.org/10.1038/nplants.2015.73.
    [17]
    Turnbull C G, Booker J P, Leyser H M. Micrografting techniques for testing long-distance signalling in Arabidopsis[J]. Plant Journal, 2002, 32(2): 255−262. doi: 10.1046/j.1365-313X.2002.01419.x
    [18]
    Love J, Bjorklund S, Vahala J, et al. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5984−5989. doi: 10.1073/pnas.0811660106
    [19]
    Gou J, Strauss S H, Tsai C J, et al. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones[J]. The Plant Cell, 2010, 22(3): 623−639. doi: 10.1105/tpc.109.073239
  • Related Articles

    [1]He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515
    [2]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [3]Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
    [4]Wang Peng, Shang Shuaishuai, Guo Fan, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Wang Chunmei. Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC[J]. Journal of Beijing Forestry University, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096
    [5]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [6]Cao Meng, Pan Ping, Ouyang Xunzhi, Zang Hao, Wu Zirong, Yang Yang, Zhan Changyan. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88-96. DOI: 10.13332/j.1000-1522.20190026
    [7]ZHENG Dong-mei, ZENG Wei-sheng.. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 23-27.
    [8]WANG Lei-hong, YANG Jun-xian, ZHENG Yu-hong, TANG Geng-guo. Modelling the geographic distribution of Malus baccata[J]. Journal of Beijing Forestry University, 2011, 33(3): 70-74.
    [9]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [10]YU Yun-shui, HE Wei-li, LI Li-jun, ZHAO Ren-jie. Optimal design of the mechanical properties of bamboo plywood form based on response surface model.[J]. Journal of Beijing Forestry University, 2009, 31(6): 103-107.
  • Cited by

    Periodical cited type(7)

    1. 张高玲,谢红霞,盛浩,周清,段良霞,吴燕语. 亚热带山区红壤可蚀性对土地利用变化的响应. 长江科学院院报. 2022(02): 63-69 .
    2. 孙文泰,马明,牛军强,尹晓宁,董铁,刘兴禄. 陇东雨养苹果覆膜对土壤团聚体结构稳定性与细根分布的影响. 生态学报. 2022(04): 1582-1593 .
    3. 崔芯蕊,张嘉良,王云琦,王玉杰,王鑫皓. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响. 水土保持学报. 2021(04): 275-281 .
    4. 赵庆营. 河道格宾生态护岸结构选择方案设计与质量控制研究. 地下水. 2021(05): 246-248 .
    5. 蔡保国. 北方地区格宾生态护岸结构形式选择及质量控制. 水利规划与设计. 2020(01): 113-116 .
    6. 吴军虎,刘侠,邵凡凡,李玉晨,王泽祥. 天然沸石对土壤水分运动特性及水稳性团聚体的影响. 灌溉排水学报. 2020(04): 34-41 .
    7. 白录顺,范茂攀,王自林,王婷,邓超,李永梅. 间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系. 水土保持研究. 2019(01): 124-129 .

    Other cited types(7)

Catalog

    Article views (2477) PDF downloads (81) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return