• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zeng Jian, Zhang Xiaoli, Zhou Xuemei, Yin Tian. Extraction of topographic information of larch plantation by oblique photogrammetry[J]. Journal of Beijing Forestry University, 2019, 41(8): 1-12. DOI: 10.13332/j.1000-1522.20190126
Citation: Zeng Jian, Zhang Xiaoli, Zhou Xuemei, Yin Tian. Extraction of topographic information of larch plantation by oblique photogrammetry[J]. Journal of Beijing Forestry University, 2019, 41(8): 1-12. DOI: 10.13332/j.1000-1522.20190126

Extraction of topographic information of larch plantation by oblique photogrammetry

More Information
  • Received Date: March 06, 2019
  • Revised Date: April 19, 2019
  • Available Online: June 18, 2019
  • Published Date: July 31, 2019
  • ObjectiveThe underforest terrain is a necessary condition for extracting forest parameters such as individual tree height and crown width. However, due to the large terrain fluctuation of the forest area, it is difficult to obtain a large-scale and high-precision digital terrain model (DTM) of forest area by traditional measurement method. Oblique photogrammetry overcomes the shortcomings of traditional measurement technology and becomes a new method to obtain three-dimensional geographic information. In this paper, UAV oblique photogrammetry technology was used to extract the topography of larch forest, and its accuracy and applicability were evaluated. It provides a reference for subsequent research on extracting individual tree parameters based on oblique photogrammetry technology.
    MethodThe typical young, middle-aged and mature Larix forests in the mountainous area of Wangyedian Forest Farm in Inner Mongolia, northern China were selected for UAV flight in the deciduous season. The oblique images of the deciduous season were reconstructed by Context Capture software to generate point clouds in the forest area. Ground points were extracted from point clouds by cloth simulation filtering (CSF), weighted linear least squares (WLS), progressive irregular triangular network filtering (PTIN) and progressive morphological filtering (PMF), and three interpolation methods were used to interpolate ground points to generate complete topography in the survey area. DTM generated from LiDAR data was used to evaluate the extraction accuracy with validated data.
    ResultThe results showed that the accuracy of terrain extraction by different algorithms was related to canopy density. In young forest and middle-aged forest area, cloth simulation filter (CSF) had the highest accuracy in extracting ground points from photogrammetric point clouds, with the determination coefficient (R2) reaching 0.999 and the root mean square error (RMSE) reaching 1.61 m and 0.47 m, respectively. In mature forest area, progressive triangulated irregular network (PTIN) had the best effect, with R2 0.999 and RMSE 0.39 m. After selecting the optimal filtering algorithm for different canopy density forest stands, the DTM accuracy of different interpolation methods was compared. The results showed that in young and middle-aged forests, the DTMs both generated by the point clouds of cloth simulation filtering (CSF) and triangulated irregular network (TIN) interpolation had the highest precision, RMSE was 1.58 m and 0.44 m, respectively. In mature forest, the DTM generated by the point clouds of progressive triangulated irregular network flitering (PTIN) and kriging (KRG) interpolation had the highest precision, RMSE was 0.31 m.
    ConclusionResearch has shown that oblique photogrammetry can be used for topographic extraction of larch forests.
  • [1]
    Mcelhinny C, Gibbons P, Brack C, et al. Forest and woodland stand structural complexity: its definition and measurement[J]. Forest Ecology and Management, 2005, 218(1−3): 1−24. doi: 10.1016/j.foreco.2005.08.034
    [2]
    Keith H, Mackey B G, Lindenmayer D B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11635−11640. doi: 10.1073/pnas.0901970106
    [3]
    冯静静, 张晓丽, 刘会玲. 基于灰度梯度图像分割的单木树冠提取研究[J]. 北京林业大学学报, 2017, 39(3):16−23.

    Feng J J, Zhang X L, Liu H L. Single tree crown extraction based on gray gradient image segmentation[J]. Journal of Beijing Forestry University, 2017, 39(3): 16−23.
    [4]
    李欢, 李明泽, 范文义, 等. 基于机载激光雷达的林隙结构参数提取[J]. 林业科学, 2018, 54(10):98−107. doi: 10.11707/j.1001-7488.20181012

    Li H, Li M Z, Fan W Y, et al. Canopy gap structure parameters extraction based on light detection and ranging (LiDAR)[J]. Scientia Silvae Sinicae, 2018, 54(10): 98−107. doi: 10.11707/j.1001-7488.20181012
    [5]
    Barnes C, Balzter H, Barrett K, et al. Individual tree crown delineation from airborne laser scanning for diseased larch forest stands[J]. Remote Sensing, 2017, 9(3): 231−251. doi: 10.3390/rs9030231
    [6]
    Ota T, Ogawa M, Shimizu K, et al. Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest[J]. Forests, 2015, 6(11): 3882−3898.
    [7]
    李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5):1138−1150.

    Li Z Y, Liu Q W , Pang Y. Review on forest parameters inversion using LiDAR[J]. Journal of Remote Sensing, 2016, 20(5): 1138−1150.
    [8]
    刘清旺, 李世明, 李增元, 等. 无人机激光雷达与摄影测量林业应用研究进展[J]. 林业科学, 2017, 53(7):134−148. doi: 10.11707/j.1001-7488.20170714

    Liu Q W, Li S M, Li Z Y, et al. Review on the applications of UAV-Based LiDAR and photogrammetry in forestry[J]. Scientia Silvae Sinicae, 2017, 53(7): 134−148. doi: 10.11707/j.1001-7488.20170714
    [9]
    Dandois J P, Ellis E C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision[J]. Remote Sensing of Environment, 2013, 136: 259−276. doi: 10.1016/j.rse.2013.04.005
    [10]
    徐思奇, 黄先锋, 张帆, 等. 倾斜摄影测量技术在大比例尺地形图测绘中的应用[J]. 测绘通报, 2018(2):111−115.

    Xu S Q, Huang X F, Zhang F, et al. Oblique photogrammetric technique applied in surveying and mapping large-scale topographic map[J]. Bulletin of Surveying and Mapping, 2018(2): 111−115.
    [11]
    周晓敏, 孟晓林, 张雪萍, 等. 倾斜摄影测量的城市真三维模型构建方法[J]. 测绘科学, 2016, 41(9):159−163.

    Zhou X M, Meng X L, Zhang X P, et al. A method for urban real 3D model building based on oblique photogrammetry[J]. Science of Surveying and Mapping, 2016, 41(9): 159−163.
    [12]
    杨国东, 王民水. 倾斜摄影测量技术应用及展望[J]. 测绘与空间地理信息, 2016, 39(1):13−15, 18. doi: 10.3969/j.issn.1672-5867.2016.01.004

    Yang G D, Wang M S. The tilt photographic measuration technique and expectation[J]. Geomatics & Spatial Information Technology, 2016, 39(1): 13−15, 18. doi: 10.3969/j.issn.1672-5867.2016.01.004
    [13]
    魏占玉, Ramon A, 何宏林, 等. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 2015, 37(2):636−648. doi: 10.3969/j.issn.0253-4967.2015.02.024

    Wei Z Y, Ramon A, Heng H L, et al. Accuracy analysis of terrain point cloud acquired by “structure from motion” using aerial photos[J]. Seismology and Geology, 2015, 37(2): 636−648. doi: 10.3969/j.issn.0253-4967.2015.02.024
    [14]
    Lin J, Wang M, Ma M, et al. Aboveground tree biomass estimation of sparse subalpine coniferous forest with UAV oblique photography[J]. Remote Sensing, 2018, 10(11): 1849−1868. doi: 10.3390/rs10111849
    [15]
    陈崇成, 李旭, 黄洪宇. 基于无人机影像匹配点云的苗圃单木冠层三维分割[J]. 农业机械学报, 2018, 49(2):149−155, 206. doi: 10.6041/j.issn.1000-1298.2018.02.020

    Chen C C, Li X, Huang H Y. 3D Segmentation of individual tree canopy in forest nursery based on drone image-matching point cloud[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 149−155, 206. doi: 10.6041/j.issn.1000-1298.2018.02.020
    [16]
    Wallace L, Lucieer A, Malenovsky Z, et al. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds[J]. Forests, 2016, 7(3): 62−78.
    [17]
    Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2004, 59(1−2): 85−101. doi: 10.1016/j.isprsjprs.2004.05.004
    [18]
    Silva C A, Klauberg C, Hentz M K, et al. Comparing the performance of ground filtering algorithms for terrain modeling in a forest environment using airborne LiDAR data[J/OL]. Floresta e Ambiente, 2018, 25(2): e20160150 [2018−08−12]. http://dx.doi.org/10.1590/2179-8087.015016.
    [19]
    汪垚, 张志玉, 倪文俭, 等. 基于机载LiDAR数据的林下地形提取算法比较与组合分析[J]. 北京林业大学学报, 2017, 39(12):25−35.

    Wang Y, Zhang Z Y, Ni W J, et al. Comparison of filter algorithms and combination analysis for DEM extracting based on airborne laser scanning point clouds[J]. Journal of Beijing Forestry University, 2017, 39(12): 25−35.
    [20]
    胡永杰, 程朋根, 陈晓勇, 等. 机载激光雷达点云滤波算法分析与比较[J]. 测绘科学技术学报, 2015, 32(1):72−77. doi: 10.3969/j.issn.1673-6338.2015.01.015

    Hu Y J, Cheng P G, Chen X Y, et al. The analysis and comparison of airborne LiDAR point cloud filter algorithms[J]. Journal of Geomatics Science and Technology, 2015, 32(1): 72−77. doi: 10.3969/j.issn.1673-6338.2015.01.015
    [21]
    White J C, Tompalski P, Coops N C, et al. Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests[J]. Remote Sensing of Environment, 2018, 208: 1−14. doi: 10.1016/j.rse.2018.02.002
    [22]
    Zhang W, Qi J, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501−523. doi: 10.3390/rs8060501
    [23]
    Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B4/1, PART4): 111−118.
    [24]
    Vosselman G. Slope based filtering of laser altimetry data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3/2, PART3): 935−942.
    [25]
    Zhang K Q, Chen S Q. A progressive morphological filter for removing nonground measurements from airborne LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 4(41): 872−882.
    [26]
    段祝庚, 肖化顺, 袁伟湘. 基于离散点云数据的森林冠层高度模型插值方法[J]. 林业科学, 2016, 52(9):86−94.

    Duan Z G, Xiao H S, Yuan W X. Comparison of interpolation methods of forest canopy height model using discrete point cloud data[J]. Scientia Silvae Sinicae, 2016, 52(9): 86−94.
    [27]
    王彬, 孙虎, 徐倩, 等. 基于无人3D摄影技术的雪松(Cedrus deodara)群落高度测定[J]. 生态学报, 2018, 38(10):3524−3533.

    Wang B, Sun H, Xu Q, et al. Height measurement of a cedar (Cedrus deodara) community based on unmanned aerial vehicles (UAV) 3D photogrammetry technology[J]. Acta Ecologica Sinica, 2018, 38(10): 3524−3533.
    [28]
    Ni W, Sun G, Pang Y, et al. Mapping three-dimensional structures of forest canopy using UAV stereo imagery: evaluating impacts of forward overlaps and image resolutions with LiDAR data as reference[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3578−3589. doi: 10.1109/JSTARS.2018.2867945
  • Cited by

    Periodical cited type(11)

    1. 高荧荧,王雯琦,符昌昊,许秀英. 基于UAV平台的农作物数据采集与处理方法研究. 现代化农业. 2025(02): 52-54 .
    2. 陈树新,刘炳杰,王海熠,苏勇,艾遒一,田昕. 结合可见光植被指数和分水岭算法的单木树冠信息提取. 遥感技术与应用. 2024(01): 34-44 .
    3. 钟磊,苏杰. 三维激光扫描技术在建筑物立面测绘中的精度分析. 科学技术创新. 2024(15): 131-134 .
    4. 赵亚凯,邓青春. 反距离加权插值参数对细沟DEM精度的影响. 西华师范大学学报(自然科学版). 2023(05): 496-504 .
    5. 莫嬃,易烜,边更战,陈书杭. 基于第一着枝角度的罗田垂枝杉树冠表面积预估模型研究. 湖南林业科技. 2023(06): 37-43+50 .
    6. 王玉堂,王佳,牛利伟,常书萍,孙露. 基于无人机倾斜摄影测量的树冠体积及表面积提取算法对比分析. 林业工程学报. 2022(03): 166-173 .
    7. 王补 ,谭伟 ,王贵林 ,蒲秀青 . 基于无人机多光谱影像的松材线虫病单木尺度监测. 林业资源管理. 2022(05): 107-117 .
    8. 杜意鸿,尹田,周雪梅,张晓丽. 倾斜摄影测量技术提取油松单木信息. 北京林业大学学报. 2021(04): 77-86 . 本站查看
    9. 宋晓鹏,张岩,王志强,邓家勇,王佳希. 无人机摄影测量提取黄土高原切沟参数精度分析. 北京师范大学学报(自然科学版). 2021(05): 606-612 .
    10. 杨全月,董泽宇,马振宇,吴悠,崔琪,卢昊. 基于SfM的针叶林无人机影像树冠分割算法. 农业机械学报. 2020(06): 181-190 .
    11. 冯正茂,陈桃红,苏玉峰,伍浩如. 倾斜摄影测量技术在纸浆厂木片资产管理中的应用. 中国造纸. 2020(06): 64-68 .

    Other cited types(8)

Catalog

    Article views (3126) PDF downloads (126) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return