Citation: | Wang Xuan, Jia Yuan, Song Limei. In-situ surface modification of cellulose nanofibril with poly(butyl acrylate)[J]. Journal of Beijing Forestry University, 2019, 41(10): 137-146. DOI: 10.13332/j.1000-1522.20190201 |
[1] |
Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications[J]. Carbohydrate Polymers, 2013, 94(1): 154−169. doi: 10.1016/j.carbpol.2013.01.033
|
[2] |
Frone A N, Berlioz S, Chailan J F, et al. Morphology and thermal properties of PLA-cellulose nanofibers composites[J]. Carbohydrate Polymers, 2013, 91(1): 377−384. doi: 10.1016/j.carbpol.2012.08.054
|
[3] |
Yang J, Han C R, Duan J F, et al. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3199−3207.
|
[4] |
Lee K Y, Aitomäki Y, Berglund L A, et al. On the use of nanocellulose as reinforcement in polymer matrix composites[J]. Composites Science and Technology, 2014, 105(4): 15−27.
|
[5] |
Yin Y, Tian X, Jiang X, et al. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate[J]. Carbohydrate Polymers, 2016, 142(2): 206−212.
|
[6] |
Rojas O J, Montero G A, Habibi Y. Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers[J]. Journal of Applied Polymer Science, 2009, 113(2): 927−935. doi: 10.1002/app.30011
|
[7] |
Batmaz R, Mohammed N, Zaman M, et al. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes[J]. Cellulose, 2014, 21(3): 1655−1665. doi: 10.1007/s10570-014-0168-8
|
[8] |
Montanari S, Roumani M, Heux L, et al. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation[J]. Macromolecules, 2005, 38(5): 1665−1671. doi: 10.1021/ma048396c
|
[9] |
Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges[J]. Journal of Polymer Science Part B: Polymer Physics, 2014, 52(12): 791−806. doi: 10.1002/polb.23490
|
[10] |
Kan K H M, Li J, Wijesekera K, et al. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants[J]. Biomacromolecules, 2013, 14(9): 3130−3139. doi: 10.1021/bm400752k
|
[11] |
曲萍, 王璇, 白浩龙, 等. 纳米纤维素表面烷基化特性的研究[J]. 北京林业大学学报, 2014, 36(1):121−125.
Qu P, Wang X, Bai H L, et al. Surface alkylation characters of cellulose nanofibrils[J]. Journal of Beijing Forestry University, 2014, 36(1): 121−125.
|
[12] |
Kedzior S A, Graham L, Moorlag C, et al. Poly (methyl methacrylate) ‐ grafted cellulose nanocrystals: One ‐ step synthesis, nanocomposite preparation, and characterization[J]. Canadian Journal of Chemical Engineering, 2016, 94(5): 811−822. doi: 10.1002/cjce.22456
|
[13] |
Rahimi S K, Otaigbe J U. The effects of the interface on microstructure and rheo-mechanical properties of polyamide 6/cellulose nanocrystal nanocomposites prepared by in-situ ring-opening polymerization and subsequent melt extrusion[J]. Polymer, 2017, 127(1): 269−285.
|
[14] |
Miao C, Hamad W Y. In-situ polymerized cellulose nanocrystals (CNC)-poly (L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing[J]. Carbohydrate Polymers, 2016, 153(2): 549−558.
|
[15] |
Gazzotti S, Farina H, Lesma G, et al. Polylactide/cellulose nanocrystals: the in situ polymerization approach to improved nanocomposites[J]. European Polymer Journal, 2017, 94(4): 173−184.
|
[16] |
Morelli C L, Belgacem M N, Branciforti M C, et al. Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion[J]. Polymer Engineering & Science, 2016, 56(12): 1339−1348.
|
[17] |
Qu P, Wang X, Zhang L P. Preparation and characterization of cellulose nanowhiskers in N, N-dimethylacetamide[J]. Advanced Materials Research. 2012, 528(2): 35–38.
|
[18] |
Miao J, Yu Y, Jiang Z, et al. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid[J]. Cellulose, 2016, 23(2): 1209−1219. doi: 10.1007/s10570-016-0864-7
|
[19] |
陈钱宝, 史铁钧, 梅晓君. 聚丙烯酸丁酯/二氧化钛杂化薄膜的制备, 表征及紫外吸收性能[J]. 合成橡胶工业, 2011, 34(2):120−124. doi: 10.3969/j.issn.1000-1255.2011.02.010
Chen Q B, Shi T J, Mei X J. Preparation, characterization and ultraviolet absorption property of poly (butyl acrylate)/titanium dioxide hybrid film[J]. China Synthetic Rubber Industry, 2011, 34(2): 120−124. doi: 10.3969/j.issn.1000-1255.2011.02.010
|
[20] |
Wang X, Sun H, Bai H, et al. Thermal, mechanical, and degradation properties of nanocomposites prepared using lignin-cellulose nanofibers and poly (lactic acid)[J]. BioResources, 2014, 9(2): 3211−3224.
|
[21] |
Cao X, Habibi Y, Lucia L A. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites[J]. Journal of Materials Chemistry, 2009, 19(38): 7137−7145. doi: 10.1039/b910517d
|
[22] |
Zhang X, Zhang J, Dong L, et al. Thermoresponsive poly(poly(ethylene glycol) methylacrylate)s grafted cellulose nanocrystals through SI-ATRP polymerization[J]. Cellulose, 2017, 24(10): 4189−4203. doi: 10.1007/s10570-017-1414-7
|
[23] |
Xin P P, Huang Y B, Hse C Y, et al. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions[J]. Materials, 2017, 10(5): 526−539.
|
[24] |
刘治国, 高晓月, 王淑花, 等. 纤维素与己内酰胺的接枝共聚反应[J]. 功能高分子学报, 2011, 24(1):76−81.
Liu Z G, Gao X Y, Wang S H, et al. Graft copolymerization of caprolactam on cellulose[J]. Journal of Functional Polymers, 2011, 24(1): 76−81.
|
[1] | Zhou Kerou, Chen Zhuo, Yu Zhucheng, Zhong Yang, Shang Ce. Population structure and genetic diversity of Bretschneidera sinensis in Xianxialing Nature Reserve, Zhejiang Province of eastern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 76-82. DOI: 10.12171/j.1000-1522.20230211 |
[2] | Qu Kai, Guo Haoping, Wang Baorui, Zhou Wenling, Hou Lili, Li Qin, Li Jihong, Cheng Tiantian. Genetic diversity analysis of Chionanthus retusus natural population based on SRAP molecular markers[J]. Journal of Beijing Forestry University, 2020, 42(12): 40-50. DOI: 10.12171/j.1000-1522.20200212 |
[3] | Yao Junxiu, Mao Xiuhong, Li Shanwen, Liu Xueliang, Wu Dejun. Genetic diversity of germplasm resources of Leuce based on SSR fluorescent marker[J]. Journal of Beijing Forestry University, 2018, 40(6): 92-100. DOI: 10.13332/j.1000-1522.20170429 |
[4] | ZHOU Peng, LIN Wei, ZHU Qin, ZHOU Xiang-bin, WU Lin-ying, CHEN Xiao-yang. Genetic diversity of Machilus pauhoi assessed by SRAP markers.[J]. Journal of Beijing Forestry University, 2016, 38(9): 16-24. DOI: 10.13332/j.1000-1522.20150423 |
[5] | CHEN Ling-na, MA Qing-guo, ZHANG Jun-pei, ZHOU Bei-bei, PEI Dong. Development of BAC-SSR markers in walnut and its application in genetic diversity analysis[J]. Journal of Beijing Forestry University, 2014, 36(6): 24-29. DOI: 10.13332/j.cnki.jbfu.2014.06.008 |
[6] | LI Tian, GUO Jun-e, ZHENG Cheng-shu, SUN Xia, SUN Xian-zhi. Genetic diversity and construction of fingerprinting of chrysanthemum cultivars by CDDP markers[J]. Journal of Beijing Forestry University, 2014, 36(4): 94-101. DOI: 10.13332/j.cnki.jbfu.2014.04.018 |
[7] | YU Xiao-nan, JI Li-jing, WANG Qi. Research advances in molecular genetic diversity of Paeonia L.[J]. Journal of Beijing Forestry University, 2012, 34(3): 130-136. |
[8] | LIAO Hui-rong, GU Wan-chun, MING Jun. Determining genetic diversity of natural population of Syringa oblatausing allozyme markers.[J]. Journal of Beijing Forestry University, 2009, 31(5): 84-89. |
[9] | LI Lun-guang, HE Ping, HE Wei. Genetic diversity of fiveneedle pine blister rusts detected by random amplified microsatellite (RAMS) in China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 112-118. |
[10] | ZHANG Yu-rong, LUO Ju-chun, YU Jin-xiu. Genetic diversity of the endangered plant Abies ziyuanensis detected by ISSR markers[J]. Journal of Beijing Forestry University, 2007, 29(6): 41-46. DOI: 10.13332/j.1000-1522.2007.06.012 |