• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Yixuan, Zhao Jian, Fu Shuangbin, Dong Mingliang, Yang Shuo, Li Shanshan, Kong Lisheng, Zhang Jinfeng. Enhancement of embryogenic callus proliferation in Chinese pine (Pinus tabuliformis) by airlift bioreactor[J]. Journal of Beijing Forestry University, 2019, 41(11): 37-43. DOI: 10.13332/j.1000-1522.20190221
Citation: Li Yixuan, Zhao Jian, Fu Shuangbin, Dong Mingliang, Yang Shuo, Li Shanshan, Kong Lisheng, Zhang Jinfeng. Enhancement of embryogenic callus proliferation in Chinese pine (Pinus tabuliformis) by airlift bioreactor[J]. Journal of Beijing Forestry University, 2019, 41(11): 37-43. DOI: 10.13332/j.1000-1522.20190221

Enhancement of embryogenic callus proliferation in Chinese pine (Pinus tabuliformis) by airlift bioreactor

More Information
  • Received Date: May 09, 2019
  • Revised Date: June 02, 2019
  • Available Online: November 01, 2019
  • Published Date: October 31, 2019
  • ObjectiveThe proliferation of a great number of active embryogenic callus can provide sufficient materials for somatic embryogenesis and plant regeneration of Pinus tabuliformis. However, the yield of flask suspension proliferation is limited and easy acidification necrosis. The establishment of airlift bioreactor system for embryogenic callus multiplication of P. tabuliformis can promote the proliferation of embryogenic callus of P. tabuliformis.
    MethodIn this study, P. tabuliformis callus was used as material, and L9 (34) orthogonal design was used to investigate the effects of three factors on callus proliferation in bioreactor, including inoculation volume, ratio of old and new media and hormone concentration. Then the suspension culture in conical flask was compared with that in conical flask under the same conditions.
    ResultThe highest embryogenic callus proliferation rate, 216.18% was obtained using 10 g embryogenic callus, 0.2 mg/L 2,4-D and 20% old culture medium inoculated in 100 mL liquid medium in the ALB.
    ConclusionCompared with conical flask suspension culture, the growth rate of embryogenic callus in ALB system was 2.15 times faster in a week. Microscopic observation shows that the proliferated embryogenic callus is stable and high quality. This study provides technical support for large-scale propagation of P. tabuliformis based on somatic embryo system.
  • [1]
    齐力旺, 杨云龙, 韩素英, 等. 油松封顶芽的组织培养[J]. 植物生理学通讯, 1995, 31(1):40−44.

    Qi L W, Yang Y L, Han S Y, et al. Tissue culture of dormant buds from Pinus tabulaeformis[J]. Plant Physiology Communications, 1995, 31(1): 40−44.
    [2]
    张成高. 油松和美国黄松无性繁殖技术研究[D]. 杨凌: 西北农林科技大学, 2005.

    Zhang C G. Study on asexual propagation technology of Pinus tabulaeformis and Pinus ponderosa[D]. Yangling: Northwest A&F University, 2005.
    [3]
    万婷. 油松胚性愈伤组织诱导研究[D]. 太原: 山西大学, 2010.

    Wan T. Induction of embryogenic callus of Chinese pine (Pinus tabulaeformis C.)[D]. Taiyuan: Shanxi University, 2010.
    [4]
    韩珊. 红叶乌桕组织培养及植株再生研究[D]. 成都: 四川农业大学, 2006.

    Han S. Study on tissue culture and plant regeneration of euphorbia cotinifocie Linn[D]. Chengdu: Sichuan Agricultural University, 2006.
    [5]
    Steward F, Mapes M, Mears K. Growth and organized development of cultured cells (Ⅱ): organization in cultures grown from freely suspended cells[J]. American Journal of Botany, 1958, 45: 705−708. doi: 10.1002/j.1537-2197.1958.tb10599.x
    [6]
    Lelu-Water M A, Bernier-Cardou M, Klimaszewska K. Simplified and improved somatic embryogeneis for clonal propagation of Pinus pinaster (Ait.)[J]. Plant Cell Report, 2006, 25(8): 767−776. doi: 10.1007/s00299-006-0115-8
    [7]
    Jain S M, Gupta P K, Newton R J. Protocol for somatic embryogenesis in woody plants[M]. New York : Springer-Verlag, 2005:114−127.
    [8]
    张金凤, 李慧, 赵健, 等. 一种油松体细胞发生与植株再生方法: CN201410573714.1[P]. 中国专利, 2016.

    Zhang J F, Li H, Zhao J, et al. Somatic embryogenesis and plant regeneration of Pinus tabulaeformis: CN201410573714.1[P]. Chinese Patent, 2016.
    [9]
    Ramos L Y S, Carballo L M, Melara M V. Establishment of cell suspension cultures of two Costa Rican Jatropha species (Euphorbiaceae)[J]. Revista De Biologia Tropical, 2013, 61(3): 1095−1107.
    [10]
    Merchuk J C. Why use air-lift bioreactors?[J]. Trends Biotechnol, 1990, 8: 66−71. doi: 10.1016/0167-7799(90)90138-N
    [11]
    Kong L S, Holtz C T, Nairn C J, et al. Application of airlift bioreactors to accelerate genetic transformation in American chestnut[J]. Plant Cell Tiss Organ Cult, 2014, 117(1): 39−50. doi: 10.1007/s11240-013-0418-8
    [12]
    刘春朝, 王玉春, 欧阳藩. 植物组织培养生产有用次生代谢产物的研究进展[J]. 生物技术通报, 1997(5):1−7.

    Liu C C, Wang Y C, Ouyang P. Advances in the production of useful secondary metabolites by plant tissue culture[J]. Biotechnology Bulletin, 1997(5): 1−7.
    [13]
    李玲莉, 刘华敏, 孔立生, 等. 利用生物反应器进行香水百合培养研究[J]. 西北林学院学报, 2014, 29(1):89−94. doi: 10.3969/j.issn.1001-7461.2014.01.18

    Li L L, Liu H M, Kong L S, et al. Culture of perfume lily in vitro with airlift bio-reactors[J]. Journal of Northwest Forestry University, 2014, 29(1): 89−94. doi: 10.3969/j.issn.1001-7461.2014.01.18
    [14]
    付双彬. 油松胚性愈伤组织扩增、保存与遗传转化研究[D]. 北京: 北京林业大学, 2016.

    Fu S B. Proliferation, cryopreservation and genetic transformation of embryogenic callus of Chinese pine (Pinus tabulaeformis C.)[D]. Beijing: Beijing Forestry University, 2016.
    [15]
    Litvay J D, Verma D C, Johnson M A, et al. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.)[J]. Plant Cell Report, 1985, 4(6): 325−328. doi: 10.1007/BF00269890
    [16]
    刘华, 梅兴国. TTC法测定红豆杉细胞活力[J]. 植物生理学通讯, 2001, 37(6):537−539.

    Liu H, Mei X G. Examining cell viability of Taxus chinensis with TTC (2,3,5-triphenyl-2H-tet-razolium chloride)[J]. Plant Physiology Communications, 2001, 37(6): 537−539.
    [17]
    Jiménez J A, Alonso-Blázquez N, López-Vela D, et al. Influence of culture vessel characteristics and agitation rate on gaseous exchange, hydrodynamic stress, and growth of embryogenic cork oak (Quercus suber L.) cultures[J]. In Vitro Cell & Developmental Biology-Plant, 2011, 47: 578−588.
    [18]
    吴春霞. 植物细胞悬浮培养的影响因素[J]. 安徽农业科学, 2009, 37(1):36−38. doi: 10.3969/j.issn.0517-6611.2009.01.015

    Wu C X. Influencing factors on the culturing of plant suspension Cell[J]. Journal of Anhui Agricultural Sciences, 2009, 37(1): 36−38. doi: 10.3969/j.issn.0517-6611.2009.01.015
    [19]
    方文娟, 韩烈保, 曾会明. 植物细胞悬浮培养影响因子研究[J]. 生物技术通报, 2005(5):12−15.

    Fang W J, Han L B, Zeng H M. Research advances in factors affecting establishment of plant cell suspension culture[J]. Biotechnology Bulletin, 2005(5): 12−15.
    [20]
    Somers D A, Birnberg P R, Petersen W L, et al. The effect of conditioned medium on colony formation from ‘black mexican sweet’ corn protoplasts[J]. Plant Science, 1987, 53(3): 249−256. doi: 10.1016/0168-9452(87)90162-2
    [21]
    孙敬三,桂耀林. 植物细胞工程实验技术[M]. 北京:科学出版社,1995.

    Sun J S, Gui Y L. Experimental technology of plant cell engineering[M]. Beijing: Science Press, 1995.
    [22]
    Li H, Piao X C, Gao R, et al. Effect of several physicochemical factors on callus biomass and bioactive compound accumulation of R. sachalinensis bioreactor culture[J]. In Vitro Cell & Developmental Biology-Plant, 2016, 52(3): 241−250.
    [23]
    Li Y, Shao C H, Park S Y, et al. Production of salidroside and polysaccharides in Rhodiola sachalinensis using air-lift bioreactor systems[J]. Acta Physiologiae Plantarum, 2014, 36: 2975−2983. doi: 10.1007/s11738-014-1669-7
    [24]
    Jay V, Genestier S, Courduroux J C. Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures[J]. Plant Cell Report, 1992, 11(12): 605−608.
    [25]
    Tapia E, Sequeida A, Castro A, et al. Development of grapevine somatic embryogenesis using an airlift bioreactor as an efficient tool in the generation of transgenic plants[J]. Journal of Biotechnology, 2009, 139(1): 95−101. doi: 10.1016/j.jbiotec.2008.09.009
    [26]
    Kong L, Tull R, Holtz C T, et al. Application of airlift bioreactors to accelerate genetic transformation of American chestnut[J]. Plant Cell Tissue and Organ Culture, 2014, 117(1): 39−50.
    [27]
    成喜雨, 何姗姗, 倪文, 等. 植物组织培养生物反应器技术研究进展[J]. 生物加工过程, 2003, 1(2):18−22. doi: 10.3969/j.issn.1672-3678.2003.02.004

    Cheng X Y, He S S, Ni W, et al. Advances in bioreactor technology for plant tissue culture[J]. Chinese Journal of Bioprocess Engineering, 2003, 1(2): 18−22. doi: 10.3969/j.issn.1672-3678.2003.02.004
  • Cited by

    Periodical cited type(1)

    1. 庞家举. 油松体细胞胚胎发生技术研究进展. 辽宁林业科技. 2023(05): 51-52+62 .

    Other cited types(0)

Catalog

    Article views (2568) PDF downloads (58) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return