• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
SUN Ling-jun, WANG Hang-jun, QI Heng-nian. Wood recognition based on block local binary pattern (LBP)[J]. Journal of Beijing Forestry University, 2011, 33(4): 107-112.
Citation: SUN Ling-jun, WANG Hang-jun, QI Heng-nian. Wood recognition based on block local binary pattern (LBP)[J]. Journal of Beijing Forestry University, 2011, 33(4): 107-112.

Wood recognition based on block local binary pattern (LBP)

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Published Date: July 29, 2011
  • The automatic wood recognition is studied in this paper through wood stereogram for its convenient way to obtain. Firstly, a standardizing preprocess of wood images was carried out. Secondly, block local binary pattern (LBP) was selected to extract wood features and three different distances (European distance, Chi-square distance, and diffusion distance) were introduced to classification experiments. At last, we used nearest neighbor classifier to identify wood features, discussed effects of block LBP features on recognition results and compared recognition rates in different distances. Results show that different block ways have significant influence on the final classification, among which block along the tree ring direction shows downward trend and proper block will improve the recognition rates in the vertical direction of tree ring. Chi-square distance can obtain the best recognition rate, up to 93.3%, 2.5% higher than that of European distance.
  • Related Articles

    [1]Qi Chusheng, Zhan Zhibin, Dai Lu. Analysis methods and characteristic parameters of wood microstructure[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240287
    [2]Liu Changchun, Liu Pengju, Ji Yeyun. Research on forest fire smoke detection technology based on video region dynamic features[J]. Journal of Beijing Forestry University, 2021, 43(1): 10-19. DOI: 10.12171/j.1000-1522.20200049
    [3]LI Chao, LIU Si-jia, CAO Jun, YU Hui-ling, ZHANG Yi-zhuo. The method of wood defect recognition based on PSO feature selection and compressed sensing[J]. Journal of Beijing Forestry University, 2015, 37(7): 117-122. DOI: 10.13332/j.1000-1522.20140385
    [4]ZHANG Yi-zhuo, MA Lin, XU Lei1, YU Hui-ling. Wood board texture classification based on genetic fusion of wavelet and curvelet features.[J]. Journal of Beijing Forestry University, 2014, 36(2): 119-124.
    [5]DU Xiao-chen, YIN Jian-xin, QI Heng-nian, FENG Hai-lin. Defective region detection for knot of wood based on color histogram and LBP-TD operator.[J]. Journal of Beijing Forestry University, 2012, 34(3): 71-75.
    [6]SONG Sha-sha, ZHAO Guang-jie. Fractal characteristics of macroscopic and microscopic cell-piled structure patterns of wood[J]. Journal of Beijing Forestry University, 2011, 33(4): 102-106.
    [7]QI Heng-nian, CHEN Feng-nong, FANG Lu-ming, MA Ling-fei. A method for wood pore image segmentation based on mathematical morphology.[J]. Journal of Beijing Forestry University, 2008, 30(4): 12-16.
    [8]MU Jun, YU Zhi-ming, LI Li, ZHOU Wen-rui. Preparation and analysis of wood vinegar with wood residues[J]. Journal of Beijing Forestry University, 2008, 30(2): 129-132.
    [9]LIU Xing-e, JIANG Ze-hui, WANG Xiao-qing, FEI Ben-hua, REN Hai-qing. Correlationship between tree characteristics and wood increments of Populus×xiaohei[J]. Journal of Beijing Forestry University, 2007, 29(3): 136-141. DOI: 10.13332/j.1000-1522.2007.03.022
    [10]ZHAO Guang-jie, LUO Wen-sheng, Furuno Takeshi, REN Qiang. Pyrolytic characteristics of burning residue of fire-retardant wood[J]. Journal of Beijing Forestry University, 2006, 28(3): 133-138.
  • Cited by

    Periodical cited type(10)

    1. 王辉,李辉,陈立君. 依据彩色共生矩阵对木质板材的识别. 东北林业大学学报. 2020(07): 103-106 .
    2. 刘嘉政,王雪峰,王甜. 基于深度学习的5种树皮纹理图像识别研究. 北京林业大学学报. 2019(04): 146-154 . 本站查看
    3. 刘嘉政,王雪峰,王甜. 基于多特征融合和CNN模型的树种图像识别研究. 北京林业大学学报. 2019(11): 76-86 . 本站查看
    4. 林志玮,丁启禄,涂伟豪,林金石,刘金福,黄炎和. 基于多元HoG及无人机航拍图像的植被类型识别. 森林与环境学报. 2018(04): 444-450 .
    5. 李晖,吴佳宁,苑玮琦,隋春江. 基于视觉显著性的木板实时分类方法研究. 仪器仪表学报. 2018(12): 237-244 .
    6. 单振菊,杨雷亮,陈志云,管维,王章根. 进口原木木种鉴定技术综述. 林业与环境科学. 2017(06): 119-123 .
    7. 朱涛,林金国. 气相色谱质谱联用技术在木材识别中的应用. 木材工业. 2017(02): 57-60 .
    8. 多化豫,高峰,李福胜,魏汉夫,张欣宏. 基于图像处理的木片与树皮的新识别参数研究. 西北林学院学报. 2015(01): 207-210 .
    9. 杨秋霞,罗传文. 基于LBP和稀疏表示的林火烟雾图像识别研究. 安徽农业科学. 2014(34): 12342-12346 .
    10. 刘子豪,汪杭军. 基于PCA+FisherTrees特征融合的木材识别. 林业科学. 2013(06): 122-128 .

    Other cited types(9)

Catalog

    Article views (4514) PDF downloads (57) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return