• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Xiang, Dong Lihu, Li Fengri. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9-18. DOI: 10.13332/j.1000-1522.20170428
Citation: Li Xiang, Dong Lihu, Li Fengri. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9-18. DOI: 10.13332/j.1000-1522.20170428

Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China

More Information
  • Received Date: November 28, 2017
  • Revised Date: April 16, 2018
  • Published Date: May 31, 2018
  • ObjectiveBased on the data of 5211 sample trees in 61 permanent sample plots in Mongolian pine plantations from Maoershan Experimental Forest Farm, Hengtoushan Forest Farm, Mengjiagang Forest Farm in Heilongjiang Province of northeastern China, the simultaneous equations for tree height model and height to crown base model were developed.
    MethodAt first, 2 alternative height-diameter models had been selected by comparing the goodness of fit for 8 height-diameter models. From 5 basic height to crown base(HCB)models, 3 best HCB models including tree and stand variables (tree size, competition index, site condition) were selected as alternative models using the method of all subset regression. Based on the seeming unrelated regression (SUR), the parameters of the simultaneous equations model of height and HCB were estimated considering each kind of combinations for 2 alternative height-diameter models and 3 alternative HCB models, respectively. Finally, we evaluated the fitting effect of the simultaneous equation model.
    ResultThe results showed that H and HCB were positively correlated with basal area (G) and average height of dominant tree (H0). For the best simultaneous equations, the coefficient determination (Ra2) was 0.9520 and the root-mean-square error (RMSE) was 1.17m by fitting height (H), the Ra2 was 0.9066, and RMSE was 1.36m by fitting HCB. The validation values of the best simultaneous equations were smaller.
    ConclusionOn the whole, the simultaneous equations developed performed well in predicting the tree H and HCB simultaneously with the least predicting errors, and the model could handle correlations between tree H and HCB. The simultaneous equations considering stand variables developed in this paper could be suitable for predicting H and HCB for Mongolian pine plantations with different stand conditions and it will provide basis for future research on the crown structure and dynamics.
  • [1]
    Sharma R P, Vacek Z, Vacek S, et al. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.)[J/OL]. Plos One, 2017, 12(10): e0186394[2017-09-09].https://doi.org/10.1371/journal.pone.0186394.
    [2]
    Pearcy R W, Muraoka H, Valladares F. Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model[J].New Phytologist, 2005, 166(3):791-800. doi: 10.1111/j.1469-8137.2005.01328.x
    [3]
    卢军, 李凤日, 张会儒, 等.帽儿山天然次生林主要树种冠长率模型[J].林业科学, 2011, 47(6):70-76. http://d.old.wanfangdata.com.cn/Periodical/lykx201106011

    Lu J, Li F R, Zhang H R, et al. A crown ratio model for dominant species in secondary forests in Mao'er Mountain[J]. Scientia Silvae Sinicae, 2011, 47(6):70-76. http://d.old.wanfangdata.com.cn/Periodical/lykx201106011
    [4]
    Kuprevicius A, Auty D, Achim A, et al. Quantifying the influence of live crown ratio on the mechanical properties of clear wood[J]. Forestry, 2013, 86(3):361-369. doi: 10.1093/forestry/cpt006
    [5]
    苏乙奇.人工落叶松枝下高动态研究[J].林业调查规划, 2008, 33(1):21-24. doi: 10.3969/j.issn.1671-3168.2008.01.007

    Su Y Q. Dynamic study on under branch height of artificial Larix gmelinii[J]. Forest Inventory & Planning, 2008, 33(1): 21-24. doi: 10.3969/j.issn.1671-3168.2008.01.007
    [6]
    Temesgen H, Lemay V, Mitchell S J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia[J]. Forestry Chronicle, 2005, 81(1):133-141. doi: 10.5558/tfc81133-1
    [7]
    Rijal B, Weiskittel A R, Kershaw J A J. Development of height to crown base models for thirteen tree species of the North American Acadian Region[J]. Forestry Chronicle, 2012, 88(1): 60-73. doi: 10.5558/tfc2012-011
    [8]
    Fu L, Zhang H, Sharma R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. Forest Ecology & Management, 2017, 384(1):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83c472951bb41ee708d7b0744b17a432
    [9]
    陈东升, 孙晓梅, 李凤日, 等.落叶松人工林节子内部特征变化规律研究[J].北京林业大学学报, 2015, 37(2):16-23. doi: 10.13332/j.cnki.jbfu.2015.02.014

    Chen D S, Sun X M, Li F R, et al. Changes of the internal characteristics of knots in larch plantation[J]. Journal of Beijing Forestry University, 2015, 37(2):16-23. doi: 10.13332/j.cnki.jbfu.2015.02.014
    [10]
    Wykoff W R, Crookston N L, Stage A R. User's guide to the stand prognosis model[R]. USDA Forest Service, United States Department of Agriculture, 1982.
    [11]
    Walters D K, Hann D W. Taper equations for six conifer species in southwest Oregon[M]. Corvallis: Oregon State University, 1986.
    [12]
    Hanus M L, Hann D W, Marshall D D. Predicting height to crown base for undamaged and damaged trees in southwest Oregon[M]. Corvallis: Oregon Stage University, 2000.
    [13]
    Hann D W, Marshall D D, Hanus M L. Equations for predicting height-to-crown-base, 5-year diameter growth rate, 5-year height growth rate, 5-year mortality rate and maximum size-density trajectory for Douglas-fir and western hemlock in the coastal region of the Pacific Northwest[M]. Corvallis: Oregon Stage University, 2003.
    [14]
    赵俊卉, 亢新刚, 刘燕.长白山主要针叶树种最优树高曲线研究[J].北京林业大学学报, 2009, 31(4):13-18. doi: 10.3321/j.issn:1000-1522.2009.04.003

    Zhao J H, Kang X G, Liu Y. Optimal height-diameter models for dominant coniferous species in Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2009, 31(4):13-18. doi: 10.3321/j.issn:1000-1522.2009.04.003
    [15]
    卢军, 张会儒, 雷相东, 等.长白山云冷杉针阔混交林幼树树高-胸径模型[J].北京林业大学学报, 2015, 37(11):10-25. doi: 10.13332/j.1000-1522.20140429

    Lu J, Zhang H R, Lei X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2015, 37(11):10-25. doi: 10.13332/j.1000-1522.20140429
    [16]
    王冬至, 张冬燕, 王方, 等.塞罕坝主要立地类型针阔混交林树高曲线构建[J].北京林业大学学报, 2016, 38(10):7-14. doi: 10.13332/j.1000-1522.20150359

    Wang D Z, Zhang D Y, Wang F, et al. Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba, Hebei of northern China[J]. Journal of Beijing Forestry University, 2016, 38(10):7-14. doi: 10.13332/j.1000-1522.20150359
    [17]
    Kershaw J A J, Maguire D A, Hann D W. Longevity and duration of radial growth in Douglas-fir branches[J]. Canadian Journal of Forest Research, 1990, 20(11):1690-1695. doi: 10.1139/x90-225
    [18]
    Russell M B, Weiskittel A R, Kershaw J A. Comparing strategies for modeling individual-tree height and height-to-crown base increment in mixed-species Acadian forests of northeastern North America[J]. European Journal of Forest Research, 2014, 133(6):1121-1135. doi: 10.1007/s10342-014-0827-1
    [19]
    Dong L, Zhang L, Li F. A three-step proportional weighting system of nonlinear biomass equations[J]. Forest Science, 2015, 61(1): 35-45. doi: 10.5849/forsci.13-193
    [20]
    Sibbesen E. Some new equations to describe phosphate sorption by soils[J]. European Journal of Soil Science, 2010, 32(1):67-74. http://cn.bing.com/academic/profile?id=8073e9be9f6ab4cd3d0fec82d0ef58e4&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Sharma M, Zhang S Y. Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana[J]. Scandinavian Journal of Forest Research, 2004, 19(5):442-451. doi: 10.1080/02827580410030163
    [22]
    Mønness E. Diameter distributions and height curves in even-aged stands of Pinus sylvestris L.[J]. Norsk Institutt for Skogforskning, 1982, 36(15):1-40.
    [23]
    Sánchez C A L, Varela J G, Dorado F C, et al. A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain)[J]. Annals of Forest Science, 2003, 60(3):237-245. doi: 10.1051/forest:2003015
    [24]
    Schröder J, González J G Á. Comparing the performance of generalized diameter-height equations for Maritime pine in Northwestern Spain[J]. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch, 2001, 120(1-6):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27925fc274150a0d9c08098af3d5c270
    [25]
    Adame P, Río M D, Cañellas I. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.)[J]. Forest Ecology & Management, 2008, 256(1):88-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64d92a26a96433943f26c1080521b0fc
    [26]
    Li F. Modeling crown profile of Larix olgensis trees[J]. Scientia Silvae Sinicae, 2004, 40(5):16-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx200405003
    [27]
    曾伟生, 唐守正.立木生物量方程的优度评价和精度分析[J].林业科学, 2011, 47(11):106-113. doi: 10.11707/j.1001-7488.20111117

    Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11):106-113. doi: 10.11707/j.1001-7488.20111117
    [28]
    Soares P, Tomé M. A tree crown ratio prediction equation for eucalypt plantations[J]. Annals of Forest Science, 2001, 58(2):193-202. doi: 10.1051/forest:2001118
    [29]
    胥辉, 全宏波, 王斌.思茅松标准树高曲线的研究[J].西南林业大学学报, 2000, 20(2):74-77. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb200002003

    Xu H, Quan H B, Wang B. Study on standard diameter-height curves model of Pinus kesiya var. langbianensis[J]. Journal of Southwest Forestry College, 2000, 20(2): 74-77. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb200002003
    [30]
    马武, 雷相东, 徐光, 等.蒙古栎天然林单木生长模型的研究(Ⅱ):树高—胸径模型[J].西北农林科技大学学报(自然科学版), 2015, 43(3):83-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnydxxb201503012

    Ma W, Lei X D, Xu G, et al. Growth model for individual-tree in natural Quercus mongolica forests (Ⅱ): height-diameter model[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(3): 83-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnydxxb201503012
    [31]
    Sonmez T. Generalized height-diameter models for Picea orientalis L.[J]. Journal of Environmental Biology, 2009, 30(5):767-772. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001038151
    [32]
    董云飞, 孙玉军, 许昊. 3种标准树高曲线建立方法的比较[J].西北农林科技大学学报(自然科学版), 2015, 43(11):82-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201511012

    Dong Y F, Sun Y J, Xu H. Comparison of three methods for constructing generalized height-diameter curve[J]. Journal of Northwest A& University (Natural Science Edition), 2015, 43(11): 82-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201511012
    [33]
    段文标, 王春萍.樟子松人工林生长与立地因子间关系的研究:草牧场防护林主要适地适树初步研究[J].东北林业大学学报, 1994, 22(5):1-6. http://www.cqvip.com/Main/Detail.aspx?id=1321485

    Duan W B, Wang C P. Study on the relationship between growth and site factors of Mongolian Scots pine: a preliminary study on the main species in the shelter forest of grassland[J]. Journal of Northeast Forestry University, 1994, 22(5): 1-6. http://www.cqvip.com/Main/Detail.aspx?id=1321485
    [34]
    罗玲.榆林沙区不同立地条件下樟子松人工林生长规律的研究[D].杨凌: 西北农林科技大学, 2008.

    Luo L. Research on growth characteristics of Mongolian Pine on different sites in Yulin sandland area[D]. Yangling: Northwest A& University, 2008.
    [35]
    贾炜玮.樟子松人工林枝条生长及节子大小预测模型的研究[D].哈尔滨: 东北林业大学, 2006.

    Jia W W. Predicting models of branch growth and knot properties for Mongolian Scots pine in plantation[D]. Harbin: Northeast Forestry University, 2006.
    [36]
    孙鸿宇, 宋丁全, 王福生.不同立地条件对毛竹枝下高的影响研究[J].金陵科技学院学报, 2009, 8(4):61-65. doi: 10.3969/j.issn.1672-755X.2009.04.016

    Sun H Y, Song D Q, Wang F S. Effects of different site conditions on under-branch height of Phyllostachys pubescens Mazel[J]. Journal of Jinling Institute of Technology, 2009, 8(4):61-65. doi: 10.3969/j.issn.1672-755X.2009.04.016
  • Cited by

    Periodical cited type(10)

    1. 刘丽,郭韦韦,柳晓东,王平,白洁,赵恩全,温晖,周大猷,胡晓生,张志刚,李明. 基于择伐的云冷杉天然林结构动态研究. 西北农林科技大学学报(自然科学版). 2024(12): 39-50 .
    2. 王倩,程顺,李永宁. 间伐对不同龄组华北落叶松人工林直径生长的影响. 林业与生态科学. 2022(02): 121-126 .
    3. 彭泊林,杨华,谢榕. 择伐对长白山云冷杉林生长优势和直径结构异质性的影响. 北京林业大学学报. 2022(05): 34-42 . 本站查看
    4. 陈哲,魏浩亮,周庆营,王海东,丁万林,李艳茹,贾晓静,徐满,王超,陈瑜,谷建才. 抚育间伐对华北落叶松人工林林分结构的影响. 中南林业科技大学学报. 2022(05): 54-64 .
    5. 周钰淮 ,王瑞辉 ,刘凯利 ,张斌 ,李雪惠 ,胡佳怡 . 抚育间伐对川西柳杉人工林生长和林下植被多样性的影响. 中南林业科技大学学报. 2022(06): 65-74+84 .
    6. 覃文渊. 配方施肥对杉木人工林大径材的影响. 江苏农业科学. 2021(11): 98-102 .
    7. 陈德洋. 不同施肥处理对桉树人工林大径材的影响. 湖北农业科学. 2021(S2): 335-338+361 .
    8. 闫东锋,贺文,马瑞婷,杨喜田. 抚育间伐对栓皮栎种群空间分布格局的影响. 生态环境学报. 2020(03): 429-437 .
    9. 唐杨,陈红,童跃伟,朱琪,周旺明,周莉,代力民,于大炮. 长白山阔叶红松林不同强度择伐后关键树种的竞争关系. 应用生态学报. 2019(05): 1469-1478 .
    10. 李远发,何吉安,喻素芳,廖良宁,王宏翔,叶绍明. 南亚热带细叶云南松林大径木择伐后的空间格局. 生态学杂志. 2019(12): 3585-3592 .

    Other cited types(21)

Catalog

    Article views (1929) PDF downloads (33) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return