Advanced search
    Han Chao, Ji Xiaodong, Liu Xiaoguang, Zhang Xiao, Zhao Donghui. Tribological properties between roots and soil of five common tree species in North China[J]. Journal of Beijing Forestry University, 2020, 42(9): 80-91. DOI: 10.12171/j.1000-1522.20190432
    Citation: Han Chao, Ji Xiaodong, Liu Xiaoguang, Zhang Xiao, Zhao Donghui. Tribological properties between roots and soil of five common tree species in North China[J]. Journal of Beijing Forestry University, 2020, 42(9): 80-91. DOI: 10.12171/j.1000-1522.20190432

    Tribological properties between roots and soil of five common tree species in North China

    More Information
    • Received Date: November 13, 2019
    • Revised Date: February 11, 2020
    • Available Online: September 06, 2020
    • Published Date: September 29, 2020
    •   Objective  Pinus tabuliformis, Betula platyphylla, Quercus mongolica, Larix principis-rupprechtii and Ulmus pumila are widely grown and planted in the North China. Their roots play an important role in anchoring soil and preventing landslides. Therefore, it is of scientific significance to study their root soil interface friction performance.
        Method  In this paper, the roots of five tree species dug from the Beigou Forest Farm of Mulan Forest Administration Bureau in Mulan Weichang County of Hebei Province, northern China were divided into several small sections according to different diameters, and the roots were buried in the soil specimen box with a dry density of 1.52 g/cm3 and a moisture content of 12.72%. The root pulling test machine developed by the plant mechanics laboratory of Beijing Forestry University was used to pull out the roots embedded in the soil, to explore the mechanism of root pulling out and analyze the factors affecting the friction force from different tree species and varied diameters.
        Result  (1) There were two failure modes in the process of root pulling out. When the maximum tensile strength of root was less than the maximum friction between root and soil, the root pulling off failure will occur, otherwise, the root pulling out failure will occur. (2) The maximum friction of root system increased as a power function with the diameter increasing and the fitting degree was very high. (3) The maximum shear stress of root soil interface of Q. mongolica and U. pumila decreased with the increase of diameter, while that of B. platyphylla, L. principis-rupprechtii and P. tabuliformis increased with the increase of diameter. (4) The shear stress and displacement curve of the root soil interface of five tree species can be fitted by the improved hyperbolic model, and the shear stress of each tree species reached the peak value when the displacement was 6% of the total value.
        Conclusion  The results show that different vegetation types and diameters have great influence on the soil consolidation effect of roots. The traditional prediction method of soil consolidation effect overestimates the soil consolidation effect of roots. Therefore, the influence of roots should be considered comprehensively in the construction of artificial protective forest.
    • [1]
      张晓, 黄晓强, 信忠保, 等. 北京山区不同林分林下植被根系分布特征及其影响因素[J]. 北京林业大学学报, 2018, 40(4):51−57.

      Zhang X, Huang X Q, Xin Z B, et al. Distribution characteristics and its influencing factors of understory vegetation roots under the typical plantations in mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2018, 40(4): 51−57.
      [2]
      Montagnoli A, Terzaghi M, Magatti G, et al. Conversion from coppice to high stand increase soil erosion in steep forestland of European beech[J]. Reforesta, 2016, 2: 60−75.
      [3]
      岳小泉, 王立海, 葛晓雯. 风荷载作用下树木力学特性研究进展[J]. 森林工程, 2015, 31(6):33−36.

      Yue X Q, Wang L H, Ge X W. Research progress of mechanical properties of trees under wind load action[J]. Forest Engineering, 2015, 31(6): 33−36.
      [4]
      Ennos A R. The anchorage of leek seedlings: the effect of root length and soil strength[J]. Annals of Botany, 1990, 65(4): 409−416. doi: 10.1093/oxfordjournals.aob.a087951
      [5]
      Coutts M P, Nielsen C C N, Nicoll B C. The development of symmetry, rigidity and anchorage in the structural root system of conifers[J]. Plant and Soil, 1999, 217(1−2): 1−15.
      [6]
      Kamimura K, Kitagawa K, Saito S, et al. Root anchorage of hinoki (Chamaecyparis obtuse (Sieb. Et Zucc.) Endl.) under the combined loading of wind and rapidly supplied water on soil: analyses based on tree-pulling experiments[J]. European Journal of Forest Research, 2012, 131(1): 219−227. doi: 10.1007/s10342-011-0508-2
      [7]
      Bailey P H J. The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana[J]. Journal of Experimental Botany, 2002, 53: 333−340. doi: 10.1093/jexbot/53.367.333
      [8]
      Mickovski S B, Ennos R A. A morphological and mechanical study of the root systems of suppressed crown Scots pine Pinus sylvestris[J]. Trees, 2002, 16(4−5): 274−280.
      [9]
      Dupuy L, Fourcaud T, Stokes A. A numerical investigation into the influence of soil type and root architecture on tree anchorage[J]. Plant and Soil, 2005, 278(1−2): 119−134. doi: 10.1007/s11104-005-7577-2
      [10]
      Reubens B, Poesen J, Frédéric D, et al. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review[J]. Trees, Structure and Function, 2007, 21(4): 385−402. doi: 10.1007/s00468-007-0132-4
      [11]
      Ghani M A, Stokes A, Fourcaud T. The effect of root architecture and root loss through trenching on the anchorage of tropical urban trees (Eugenia grandis Wight)[J]. Trees, 2009, 23(2): 197−209. doi: 10.1007/s00468-008-0269-9
      [12]
      Lombardi F, Scippa G S, Lasserre B, et al. The influence of slope onSpartium junceumroot system: morphological, anatomical and biomechanical adaptation[J]. Journal of Plant Research, 2017, 130(3): 515−525. doi: 10.1007/s10265-017-0919-3
      [13]
      De Zio E, Trupiano D, Montagnoli A, et al. Poplar woody taproot under bending stress: the asymmetric response of the convex and concave sides[J/OL]. Annals of Botany, 2016: mcw159[2019−11−02]. https://academic.oup.com/aob/article/118/4/865/2196621.
      [14]
      Rossi M, Trupiano D, Tamburro M, et al. MicroRNAs expression patterns in the response of poplar woody root to bending stress[J]. Planta, 2015, 242(1): 339−351. doi: 10.1007/s00425-015-2311-7
      [15]
      Trupiano D, Iorio A D, Montagnoli A, et al. Involvement of lignin and hormones in the response of woody poplar taproots to mechanical stress[J]. Physiologia Plantarum, 2012, 146(1): 39−52. doi: 10.1111/j.1399-3054.2012.01601.x
      [16]
      周云艳, 陈建平, 杨倩, 等. 植物根系固土护坡效应的原位测定[J]. 北京林业大学学报, 2010, 32(6):66−70.

      Zhou Y Y, Chen J P, Yang Q, et al. In situ measurement of mechanical effect of plant root systems on soil reinforcement and slope protection[J]. Journal of Beijing Forestry University, 2010, 32(6): 66−70.
      [17]
      Waldron L J. The shear resistance of root-permeated homogeneous and stratified soil[J]. Journal of the Soil Science Society of America, 1977, 41: 843−849. doi: 10.2136/sssaj1977.03615995004100050005x
      [18]
      Wu T H, Mckinnell W P, Swanston D N. Strength of tree roots and landslides on Prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1): 19−33. doi: 10.1139/t79-003
      [19]
      Pollen N, Simon A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model[J/OL]. Water Resources Research, 2005, 41(7): W07025[2019−09−11]. http://www.onacademic.com/detail/journal_1000035772916110_fd65.html.
      [20]
      朱锦奇, 王云琦, 王玉杰, 等. 基于两种计算模型的油松与元宝枫根系固土效能分析[J]. 水土保持通报, 2015, 35(4):277−282.

      Zhu J Q, Wang Y Q, Wang Y J, et al. An analysis on soil physical enhancement effects of root system of Pinus tabulaeformis and Acer truncatum based on two models[J]. Bulletin of Soil and Water Conservation, 2015, 35(4): 277−282.
      [21]
      朱锦奇, 王云琦, 王玉杰, 等. 基于植物生长过程的根系固土机制及Wu模型参数优化[J]. 林业科学, 2018, 54(4):52−60.

      Zhu J Q, Wang Y Q, Wang Y J, et al. Analyses on root reinforcement mechanism based on plant growth process and parameters optimization of Wu model[J]. Scientia Silvae Sinicae, 2018, 54(4): 52−60.
      [22]
      瞿文斌, 及金楠, 陈丽华, 等. 黄土高原植物根系增强土体抗剪强度的模型与试验研究[J]. 北京林业大学学报, 2017, 39(12):83−91.

      Qu W B, Ji J N, Chen L H, et al. Research on model and test of reinforcing shear strength by vegetation roots in the Loess Plateau of northern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 83−91.
      [23]
      宋维峰, 陈丽华, 刘秀萍. 林木根系固土的理论基础[J]. 水土保持通报, 2008(6):184−190.

      Song W F, Chen L H, Liu X P. Review of theories of soil reinforcement by root system in forest[J]. Bulletin of Soil and Water Conservation, 2008(6): 184−190.
      [24]
      解明曙. 林木根系固坡土力学机制研究[J]. 水土保持学报, 1990, 4(3):7−14.

      Xie M S. Study on mechanical mechanism of slope soil stabilization by tree roots[J]. Journal of Soil and Water Conservation, 1990, 4(3): 7−14.
      [25]
      陆桂红, 杨顺, 王钧, 等. 植物根系固土力学机理的研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(2):151−156.

      Lu G H, Yang S, Wang J, et al. The mechansim of plant roots reinforcement on soil[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(2): 151−156.
      [26]
      Peltola H, Seppo K, Hassinen A, et al. Mechanical stability of Scots pine, Norway spruce and birch: an analysis of tree-pulling experiments in Finland[J]. Forest Ecology and Management, 2000, 135(1): 143−153.
      [27]
      宋维峰, 陈丽华, 刘秀萍, 等. 林木根系的加筋作用试验研究[J]. 水土保持研究, 2008, 15(2):99−102.

      Song W F, Chen L H, Liu X P, et al. Experiment on forest roots reinforcement mechanism[J]. Research of Soil and Water Conservation, 2008, 15(2): 99−102.
      [28]
      栗岳洲, 付江涛. 土体粒径对盐生植物根–土复合体抗剪强度影响的试验研究[J]. 岩石力学与工程学报, 2016, 35(2):403−412.

      Li Y Z, Fu J T. Experimental study of the influence of grain size on the shear strength of rooted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 403−412.
      [29]
      杨永红, 王成华, 刘淑珍, 等. 不同植被类型根系提高浅层滑坡土体抗剪强度的试验研究[J]. 水土保持研究, 2007, 14(2):233−235.

      Yang Y H, Wang C H, Liu S Z, et al. Experimental research on improving shear strength of soil in surface landslide by root system of different vegetation type[J]. Research of Soil and Water Conservation, 2007, 14(2): 233−235.
      [30]
      祁兆鑫, 余冬梅, 刘亚斌, 等. 寒旱环境盐生植物根-土复合体抗剪强度影响因素试验研究[J]. 工程地质学报, 2017, 25(6):1438−1448.

      Qi Z X, Yu D M, Liu Y B, et al. Experimental research on factors affecting shear strength of halophyte root-soil composite systems in cold and arid environments[J]. Journal of Engineering Geology, 2017, 25(6): 1438−1448.
      [31]
      宋维峰, 陈丽华, 刘秀萍. 根系与土体接触面相互作用特性试验[J]. 中国水土保持科学, 2006, 4(2):62−65.

      Song W F, Chen L H, Liu X P. Experiment on characteristic of interface between root system and soil[J]. Science of Soil and Water Conservation, 2006, 4(2): 62−65.
      [32]
      邢会文, 刘静, 王林和, 等. 柠条、沙柳根与土及土与土界面摩擦特性[J]. 摩擦学学报, 2010, 30(1):87−91.

      Xing H W, Liu J, Wang L H, et al. Friction characteristics of soil-soil interface and root-soil interface of Caragana intermedia and Salix psammophila[J]. Tribology, 2010, 30(1): 87−91.
      [33]
      Clough C W, Duncan J M. Finite element analysis of retaining wall behavior[J]. Journal of Soil Mechanical and Foundation, ASCE, 1971, 97(l2): 1657−1674.
      [34]
      姜永东, 鲜学福, 粟健. 单一岩石变形特性及本构关系的研究[J]. 岩土力学, 2005, 26(6):941−945.

      Jiang Y D, Xian X F, Li J. Research on distortion of singlerock and constitutive relation[J]. Rock and Soil Mechanics, 2005, 26(6): 941−945.
      [35]
      王军保, 刘新荣, 刘俊, 等. 砂岩力学特性及其改进Duncan-Chang模型[J]. 岩石力学与工程学报, 2016, 35(12):2388−2397.

      Wang J B, Liu X R, Liu J, et al. Mechanical properties of sandstone and an improved Duncan-Chang constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2388−2397.
      [36]
      刘波, 胡卸文, 白凯文, 等. 基于界面本构模型的锚杆张拉受力分析[J]. 长江科学院院报, 2019, 36(6):77−82.

      Liu B, Hu X W, Bai K W, et al. Stress analysis of anchor in tension based on interface constitutive model[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(6): 77−82.
      [37]
      吕春娟, 陈丽华, 周硕, 等. 不同乔木根系的抗拉力学特性[J]. 农业工程学报, 2011, 27(13):329−335.

      Lü C J, Chen L H, Zhou S, et al. Root mechanical characteristics of different tree species[J]. Transactions of the CSAE, 2011, 27(13): 329−335.
      [38]
      刘小光, 冀晓东, 赵红华, 等. 油松根系与土壤摩擦性能研究[J]. 北京林业大学学报, 2012, 34(6):63−67.

      Liu X G, Ji X D, Zhao H H, et al. Tribological properties between roots of Pinus tabuliformis and soil[J]. Journal of Beijing Forestry University, 2012, 34(6): 63−67.
      [39]
      曹云生, 陈丽华, 盖小刚, 等. 油松根系的固土力学机制[J]. 水土保持通报, 2014, 34(5):12−16, 20.

      Cao Y S, Chen L H, Gai X G, et al. Soil reinforcement by Pinus tabuliformis roots[J]. Bulletin of Soil and Water Conservation, 2014, 34(5): 12−16, 20.
      [40]
      Hamza O, Bengough A G, Bransby M F, et al. Mechanics of root-pullout from soil: a novel image and stress analysis procedure[M]// Eco- and ground bio-engineering: the use of vegetation to improve slope stability[M]. Berlin: Springer, 2007: 213−221.
    • Related Articles

      [1]Zhou Kerou, Chen Zhuo, Yu Zhucheng, Zhong Yang, Shang Ce. Population structure and genetic diversity of Bretschneidera sinensis in Xianxialing Nature Reserve, Zhejiang Province of eastern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 76-82. DOI: 10.12171/j.1000-1522.20230211
      [2]Gao Hongzhi, Huang Xin, Su Hao, Qiao Pengfei, Jiang Zaimin, Shen Yaorong, Cai Jing. Structure and dynamic characteristics of Betula albo-sinensis populations in two regions in the Qinling Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 12-20. DOI: 10.12171/j.1000-1522.20210003
      [3]Chen Cun, Ding Changjun, Huang Qinjun, Zhang Jing, Liu Ning, Li Bo, Li Zhenghong, Su Xiaohua. Phenotypic and physiological trait diversity and population structure of Populus deltoides[J]. Journal of Beijing Forestry University, 2021, 43(6): 1-12. DOI: 10.12171/j.1000-1522.20200231
      [4]Wu Xiuping, Xu Xiaogang, Wang Lu, Li Yao. Population structure and spatial distribution point patterns of Tsuga chinensis var. tchekiangensis in Wuyishan Mountain, Jiangxi of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 60-68. DOI: 10.13332/j.1000-1522.20180309
      [5]QIU Er-fa, XU Fei, WANG Cheng, DONG Jian-wen, WU Yong-shu, . Population distribution and structure characteristics of village roadside forest in Fujian Province, eastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 68-74.
      [6]LIU Pu-xing, LU Chen-yu, YAO Xiao-jun, CAO Li-guo. Structure and spatial distribution patterns of Populus euphratica populations from different habitats in the Dunhuang Oasis[J]. Journal of Beijing Forestry University, 2011, 33(2): 48-52.
      [7]ZHAO Li-qiong, HUANG Hua-guo, LIANG Da-shuang, ZHANG Xiao-li.. Spatial distribution pattern of Picea crassifolia population in Dayekou, Gansu Province[J]. Journal of Beijing Forestry University, 2010, 32(4): 59-64.
      [8]SHI Yu, YU Xin-xiao, YUE Yong-jie, ZHANG Zhen-ming, GAN Jing, WANG Xiao-ping, LI Jin-hai. Pattern analysis of different populations in natural secondary forest of Betula davurica in mountainous area of Beijing.[J]. Journal of Beijing Forestry University, 2009, 31(5): 35-41.
      [9]MA Qin-yan. Analysis of the negative binomial distribution and test of population pattern.[J]. Journal of Beijing Forestry University, 2009, 31(3): 1-5.
      [10]NIU Li-li, YU Xin-xiao, LIU Shu-yan, LIU Yan, YUE Yong-jie, WANG Xiao-ping, CHEN Jun-qi. Life history characteristics and spatial distribution of Pinus tabulaeformis population in Songshan Nature Reserve of Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 17-21.
    • Cited by

      Periodical cited type(7)

      1. 王为,雷俊杰,简佶沛,王利宝. 基于云平台智能灌溉控制系统的油茶苗水分管理研究. 现代农业科技. 2023(20): 110-113+121 .
      2. 董诗芬,王自洪,李丽华,李看清. 不同覆盖措施对初植腾冲红花油茶生长的影响研究. 林业调查规划. 2022(03): 118-121+142 .
      3. 谢胤,余祖华,尹必期,王自洪,寸明辉,徐志映,吴兴波,杨忠品. 腾冲红花油茶主要营养器官含水率年内变化分析. 林业与环境科学. 2021(01): 25-28 .
      4. 胡玉玲,蔡芳丽,卢海燕,罗海秀,贺姣凤. 油茶林地夏季水分管理对油茶产量指标的影响. 江苏林业科技. 2018(03): 23-27+45 .
      5. 刘嘉翔,赵丹,杨建伟,史宝胜. 不同土壤水分条件下北京山梅花生长与耗水特性研究. 河北农业大学学报. 2018(05): 84-89 .
      6. 何小三,徐林初,龚春,王玉娟,刘新亮,赵攀,左继林,俞元春. 干旱胁迫对‘赣无12’苗期光合特性的影响. 中南林业科技大学学报. 2018(12): 52-61 .
      7. 樊星火,樊文勇,黄辉,施重阳,郑永红. 夏季不同灌溉方式对油茶叶片生理指标和花期的影响. 林业科技通讯. 2017(12): 12-14 .

      Other cited types(4)

    Catalog

      Article views (1938) PDF downloads (44) Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return