Citation: | Yang Ruixia, Yin Peng, Liu Xiao, Wang Yan, Liu Jiafu, Xu Jichen. Expansin gene family in association with the genome differentiation of Salix matsudana[J]. Journal of Beijing Forestry University, 2021, 43(1): 37-48. DOI: 10.12171/j.1000-1522.20200216 |
[1] |
Ma N, Wang Y, Qiu S, et al. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension[J/OL]. PLoS One, 2013, 8(10): e75997 (2013−10−04) [2019−03−13]. https://doi.org/10.1371/journal.pone.0075997.eCollection 2013.
|
[2] |
Kuluev B, Safiullina M, Knyazev A, et al. Effect of ectopic expression of NtEXPA5
|
[3] |
Yan A, Wu M, Yan L, et al. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis[J/OL]. PLoS One, 2014, 9(1): e85208 (2014−01−03) [2019−04−07]. https://doi.org/10.1371/journal.pone.0085208.
|
[4] |
Ouyang K X, Liu M Q, Pian R Q, et al. Methodology Isolation and analysis of α-expansin genes in the tree Anthocephalus chinensis (Rubiaceae)[J]. Genetics and Molecular Research, 2013, 12(2): 1061−1073. doi: 10.4238/2013.April.10.2.
|
[5] |
Zenoni S, Fasoli M, Tornielli G B, et al. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida[J]. New Phytologist, 2011, 191(3): 662−677. doi: 10.1111/j.1469-8137.2011.03726.x.
|
[6] |
Perini M A, Sin I N, Villarreal N M, et al. Overexpression of the carbohydrate binding module from, Solanum lycopersicum, expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinereal susceptibility[J]. Plant Physiology and Biochemistry, 2017, 113: 122−132. doi: 10.1016/j.plaphy.2017.01.029.
|
[7] |
Castillo F M, Canales J, Claude A, et al. Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight[J/OL]. BMC Plant Biology, 2018, 18(1): 327 (2018−12−10) [2019−01−14]. https://doi.org/10.1186/s12870-018-1535-7.
|
[8] |
Feng X, Xu Y, Peng L, et al. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana [J/OL]. Journal of Plant Physiology, 2019, 240: 153004 (2019−06−25) [2019−09−07]. https://doi.org/10.1016/j.jplph.2019.153004.
|
[9] |
Ren Y Q, Chen Y H, An J, et al. Wheat expansin gene, TaEXPA2, is involved in conferring plant tolerance to Cd toxicity[J]. Plant Science, 2018, 270: 245−256. doi: 10.1016/j.plantsci.2018.02.022.
|
[10] |
Chen L J, Zou W S, Wu G, et al. Tobacco alpha-expansin EXPA4 plays a role in Nicotiana benthamiana defence against tobacco mosaic virus[J]. Planta, 2018, 247(2): 355−368. doi: 10.1007/s00425-017-2785-6
|
[11] |
Ding A, Marowa P, Kong Y. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum)[J]. Molecular Genetics & Genomics, 2016, 291(5): 1891−1907.
|
[12] |
Han Z S, Liu Y L, Deng X, et al. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.)[J/OL]. BMC Genomics, 2019, 20(1): 101 (2019−02−01) [2019−11−25]. https://doi.org/10.1186/s12864-019-5455-1.
|
[13] |
李昊阳, 施杨, 丁亚娜. 杨树扩展蛋白基因家族的生物信息学分析[J]. 北京林业大学学报, 2014, 36(2):59−67.
Li H Y, Shi Y, Ding Y N. Bioinformatics analysis of expansin gene family in poplar genome[J]. Journal of Beijing Forestry University, 2014, 36(2): 59−67.
|
[14] |
Hou L, Zhang Z Y, Dou S H, et al. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.)[J]. Planta, 2019, 249(3): 815−829.
|
[15] |
Santiago T R, Pereira V M, de Souza W R, et al. Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.)[J/OL]. PLoS One, 2018, 13(4): e0196140 (2018−04−17)[2019−05−17]. https://doi.org/10.1371/journal.pone.0196140.eCollection2018.
|
[16] |
Li N, Pu Y, Gong Y, et al. Genomic location and expression analysis of expansin gene family reveals the evolutionary and functional significance in Triticum aestivum[J]. Genes & Genomics, 2016, 38(5): 1021−1030.
|
[17] |
Zhang H, Li J, Wang R X, et al. Comparative analysis of expansin gene codon usage patterns among eight plant species[J]. Journal of Biomolecular Structure and Dynamics, 2019, 37(4): 910−917. doi: 10.1080/07391102.2018.1442746.
|
[18] |
Quiñones Martorello A S, Fernández M E, Monterubbianesi M G, et al. Effect of combined stress (salinity + hypoxia) and auxin rooting hormone addition on morphology and growth traits in six Salix spp. clones[J]. New Forests, 2020, 51: 61−80. doi: 10.1007/s11056-019-09719-8.
|
[19] |
耿云红. 干旱胁迫对绿化木本植物抗逆性研究[J]. 山东农业大学学报(自然科学版), 2019, 50(1):12−18.
Geng Y H. Study on resistance of woody plants under drought stress[J]. Journal of Shandong Agricultural University (Natural Science), 2019, 50(1): 12−18.
|
[20] |
刘春风. 淹水对15个树种苗木生长和形态特征的影响[D]. 南京: 南京林业大学, 2009.
Liu C F. Effects of artificial flooding on the growth and morphological characteristics of 15 trees species seedlings[D]. Nanjing: Nanjing Forestry University, 2009.
|
[21] |
Shu Y, Li K L, Song J F, et al. Single and competitive adsorption of Cd (Ⅱ) and Pb (Ⅱ) from aqueous solution by activated carbon prepared with Salix matsudana Kiodz[J]. Water Science and Technology, 2016, 74 (12): 2751−2761. doi: 10.2166/wst.2016.428.
|
[22] |
Gullberg U. Towards making willows pilot species for coppicing production[J]. The Forestry Chronicle, 1993, 69(6): 721−726. doi: 10.5558/tfc69721-6.
|
[23] |
Argus G W. Infrageneric classification of Salix (Salicaceae) in the new world[J]. Systematic Botany Monographs, 1997, 52: 1−121. doi: 10.2307/25096638.
|
[24] |
Zhang J, Yuan H, Li M, et al. A high-density genetic map of tetraploid Salix matsudana using specific length amplified fragment sequencing (SLAF-seq)[J/OL]. PLoS ONE, 2016, 11(6): e0157777 (2016−06−21) [2019−02−12]. https://doi.org/10.1371/journal.pone.0157777.eCollection2016.
|
[25] |
Zhang J, Yuan H, Yang Q, et al. The genetic architecture of growth traits in Salix matsudana under salt stress[J/OL]. Horticulture Research, 2017, 4: 17024 (2017−06−14) [2019−01−21]. https://doi.org/10.1038/hortres.2017.24. eCollection2017.
|
[26] |
Prabha R, Singh D P, Sinha S, et al. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes[J]. Marine Genomics, 2017, 32: 31−39. doi: 10.1016/j.margen.2016.10.001.
|
[27] |
Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhab-ditis, Drosophila, and Arabidopsis[J]. Proceedings of the National Academy of Sciences, 1999, 96: 4482−4487. doi: 10.1073/pnas.96.8.4482.
|
[28] |
王兰伟. 异源多倍体物种的形成和演化:来自菊科蓍草属的证据[D]. 开封: 河南大学, 2011.
Wang L W. Allotetraploid speciation and evolution: evidence from the eastern asia Achillea species[D]. Kaifeng: Henan University, 2011.
|
[29] |
Tayale A, Parisod C. Natural pathways to polyploidy in plants and consequences for genome reorganization[J]. Cytogenetic & Genome Research, 2013, 140: 2−4.
|
[30] |
Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution[J]. Current Genomics, 2002, 3(6): 489−505. doi: 10.2174/1389202023350255.
|
[31] |
Wei S, Yang Y, Yin T. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution [J/OL]. Horticulture Research, 2020, 7: 45 (2020−04−01) [2020−04−25]. https://www.nature.com/articles.
|
[32] |
Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and the genome hypothesis[J]. Nucleic Acids Research, 1980, 8(1): 49−62.
|
[33] |
Grantham R, Gautier C, Gouy M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type[J]. Nucleic Acids Research, 1980, 8(9): 1893−1912.
|
[34] |
Lloyd A T, Sharp P M. Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae[J]. Nucleic Acids Research, 1992, 20(20): 5289−5295. doi: 10.1093/nar/20.20.5289.
|
[35] |
Grocock R J, Sharp P M. Synonymous codon usage in Cryptosporidium parvum: identification of two distinct trends among genes[J]. International Journal for Parasitology, 2001, 31(4): 402−412. doi: 10.1016/S0020-7519(01)00129-1.
|
[36] |
Povolotskaya I S, Kondrashov F A, Ledda A, et al. Stop codons in bacteria are not selectively equivalent[J/OL]. Biology Direct, 2012, 7: 30 (2012−09−13)[2019−06−19]. https://link.springer.com/article/10.1186/1745-6150-7-30.
|
[37] |
Korkmaz G, Holm M, Wiens T, et al. Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance[J]. Journal of Biological Chemistry, 2014, 289(44): 30334−30342. doi: 10.1074/jbc.M114.606632.
|
[38] |
Krisko A, Copic T, Gabaldón T, et al. Inferring gene function from evolutionary change in signatures of translation efficiency [J/OL]. Genome Biology, 2014, 15: 44 (2014−03−03) [2019−06−08]. https://link.springer.com/article/10.1186/gb-2014-15-3-r44.
|
[39] |
Presnyak V, Alhusaini N, Chen Y H, et al. Codon optimality is a major determinant of mRNA stability[J]. Cell, 2015, 160(6): 1111−1124. doi: 10.1016/j.cell.2015.02.029.
|
[40] |
Navarro A, Barton N H. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes[J]. Science, 2003, 300: 321−324. doi: 10.1126/science.1080600.
|