• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. DOI: 10.12171/j.1000-1522.20200249
Citation: Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. DOI: 10.12171/j.1000-1522.20200249

Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China

More Information
  • Received Date: August 12, 2020
  • Revised Date: November 18, 2020
  • Available Online: March 01, 2021
  • Published Date: April 15, 2021
  •   Objective  In order to study the effects of understory vegetation and litter on soil CO2 flux in cold temperate natural forests in China, we analyzed and explored the characteristics of CO2 flux emission under different treatments, to provide reference for the management of forest ecosystem and the study of soil greenhouse gases in Daxing’an Mountains region and theoretical reference.
      Method  In the period from May to September in 2019, the method of static box-gas chromatography was used to study soil CO2 flux emission characteristics in four main forest types (Betula platyphylla forest, Populus davidiana forest, Pinus sylvestris var. mongolica forest and Larix gmelinii forest) in the north of Daxing’an Mountains.
      Result  The soil CO2 flux of the four forest types under different treatments all showed a single-peak curve changing trend, and the peak appeared in July or August. The removal of litter increased the soil respiration of broadleaved forests and decreased the soil respiration of coniferous forests. However, the changes did not reach a significant level (P > 0.05). Compared with the natural state, the removal of understory vegetation significantly (P < 0.05) increased the average CO2 flux of Betula platyphylla forest, Populus davidiana forest and Larix gmelinii forest by 27.57%, 15.84% and 24.13%, respectively, but decreased it in Pinus sylvestris var. mongolica forest by 0.68% (P > 0.05). With the simultaneous removal of understory vegetation and litter, the average CO2 fluxes of Betula platyphylla forest, Populus davidiana forest and Larix gmelinii forest increased by 20.05%−25.34%, but the Pinus sylvestris var. mongolica forest decreased by 12.36%. The average flux of broadleaved forest was significantly larger than that of coniferous forest (P < 0.05) when the understory vegetation and litter were both removed.
      Conclusion  The existence or non-existence of litter and understory vegetation would have different effects on soil CO2 flux. Also, the impact on different forest types also varies. Scientific and reasonable understory management strategy plays a key role in regulating carbon dioxide emissions and the protection of ecological environment.
  • [1]
    Dalal R C, Allen D E. Greenhouse gas fluxes from natural ecosystems[J]. Australian Journal of Botany, 2008, 56(5): 369−407. doi: 10.1071/BT07128
    [2]
    Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464: 579−582. doi: 10.1038/nature08930
    [3]
    Berger T W, Inselsbacher E, Boltenstern S Z. Carbon dioxide emissions of soil under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures[J]. Soil Biol Biochem, 2010, 42: 986−997. doi: 10.1016/j.soilbio.2010.02.020
    [4]
    Post W, Emanuel W, Zinke P, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 156−159. doi: 10.1038/298156a0
    [5]
    吴亚丛. 林下植被清除对樟树人工林有机碳库的影响[D]. 北京: 中国林业科学研究院, 2014.

    Wu Y C. Effects of understory removal on organic carbon pool in Cinnamomum camphora plantation[D]. Beijing: Chinese Academy of Forestry, 2014.
    [6]
    李媛良, 汪思龙, 颜绍馗. 杉木人工林剔除林下植被对凋落层养分循环的短期影响[J]. 应用生态学报, 2011, 22(10):2560−2566.

    Li Y L, Wang S L, Yan S K. Short-term effects of understory vegetation removal on nutrient cycling in litter layer of Chinese fir plantation[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2560−2566.
    [7]
    贺同鑫, 李艳鹏, 张方月, 等. 林下植被剔除对杉木林土壤呼吸和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(8):797−806. doi: 10.17521/cjpe.2015.0076

    He T X, Li Y P, Zhang F Y, et al. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 797−806. doi: 10.17521/cjpe.2015.0076
    [8]
    Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980–1994[J]. Global Change Biology, 2010, 8(8): 800−812.
    [9]
    段北星, 满秀玲, 宋浩, 等. 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征[J]. 北京林业大学学报, 2018, 40(2):40−50.

    Duan B X, Man X L, Song H, et al. Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 40−50.
    [10]
    Gong C, Song C, Zhang D, et al. Litter manipulation strongly affects CO2 emissions and temperature sensitivity in a temperate freshwater marsh of northeastern China[J]. Ecological Indicators, 2019, 97: 410−418. doi: 10.1016/j.ecolind.2018.10.021
    [11]
    Leitner S, Sae-Tun O, Kranzinger L, et al. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest[J]. Plant & Soil, 2016, 403(1−2): 455−469.
    [12]
    李思思, 贺康宁, 田赟, 等. 青海高寒区5种典型林分土壤呼吸季节变化及其影响因素[J]. 北京林业大学学报, 2016, 38(10):95−103.

    Li S S, He K N, Tian Y, et al. Seasonal changes and the driving factors of soil respiration among five typical forest types in the high-elevation-cold region, Qinghai, northwestern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 95−103.
    [13]
    陈光水, 杨玉盛, 吕萍萍, 等. 中国森林土壤呼吸模式[J]. 生态学报, 2008, 28(4):1748−1761. doi: 10.3321/j.issn:1000-0933.2008.04.046

    Chen G S, Yang Y S, Lü P P, et al. Respiration model of forest soil in China[J]. Acta Ecologica Sinica, 2008, 28(4): 1748−1761. doi: 10.3321/j.issn:1000-0933.2008.04.046
    [14]
    夏秀雪, 高国强, 王东男, 等. 林下植被去除对水曲柳人工林土壤呼吸、微生物和根系动态的短期影响[J]. 生态学杂志, 2017, 36(5):1198−1207.

    Xia X X, Gao G Q, Wang D N, et al. Short-term effect of understory removal on the dynamics of soil respiration, microbial biomass, and root growth in a Fraxinus mandschurica Rupr. plantation[J]. Chinese Journal of Ecology, 2017, 36(5): 1198−1207.
    [15]
    Sun F H, Yuan J, Lu S. The change and test of climate in Northeast China over the last 100 years[J]. Climatic and Environmental Research, 2006, 11(1): 101−108.
    [16]
    Wu X, Zang S, Ma D, et al. Emissions of CO2, CH4, and N2O fluxes from forest soil in permafrost region of Daxing’an Mountains, Northeast China[J/OL]. International Journal of Environmental Research and Public Health, 2019, 16(16): 2999 (2019−08−20) [2019−10−22]. https://doi.org/10.3390/ijerph16162999.
    [17]
    Alexander H D, Mack M C. A canopy shift in interior Alaskan boreal forests: consequences for above- and belowground carbon and nitrogen pools during post-fire succession[J]. Ecosystems, 2016, 19(1): 98−114. doi: 10.1007/s10021-015-9920-7
    [18]
    Kelly R, Chipman M L, Higuera P E, et al. Recent burning of boreal forests exceeds fire regime limits of the past 10, 000 years[J]. PNAS, 2013, 110(32): 13055−13060. doi: 10.1073/pnas.1305069110
    [19]
    冯召营, 孙迎春. 浅谈林下清理在森林防火工作中的作用[J]. 现代园艺, 2019(7):191−192. doi: 10.3969/j.issn.1006-4958.2019.07.104

    Feng Z Y, Sun Y C. Discussion on the role of forest clearing in forest fire prevention[J]. Modern Horticulture, 2019(7): 191−192. doi: 10.3969/j.issn.1006-4958.2019.07.104
    [20]
    Stokes V J, Willoughby I H. Early weed control can increase long-term growth, yield and carbon sequestration of Sitka spruce stands in Britain[J]. Forestry, 2014, 87(3): 425−436.
    [21]
    Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology, 2010, 8(9): 851−866.
    [22]
    O’Neill K P, Kasischke E S, Richter D D. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska[J]. Canadian Journal of Forest Research, 2002, 32(9): 1525−1541. doi: 10.1139/x02-077
    [23]
    Conant R T, Ryan M G, Ågren G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17: 3392−3404. doi: 10.1111/j.1365-2486.2011.02496.x
    [24]
    Baldria P, Snajdr J, Merhautová V, et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change[J]. Soil Biology & Biochemistry, 2012, 56: 60−68.
    [25]
    马秀枝, 张秋良, 李长生, 等. 寒温带兴安落叶松林土壤温室气体通量的时间变异[J]. 应用生态学报, 2012, 23(8):2149−2156.

    Ma X Z, Zhang Q L, Li C S, et al. Temporal variation of soil greenhouse gases fluxes in a cold-temperate Larix gmelinii forest in Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2149−2156.
    [26]
    梁东哲, 赵雨森, 辛颖. 大兴安岭重度火烧迹地天然次生林土壤温室气体通量及其影响因子[J]. 应用生态学报, 2019, 30(3):777−784.

    Liang D Z, Zhao Y S, Xin Y. Soil greenhouse gases fluxes and the affecting factors of natural secondary forest from seriously burned area in Greater Khingan Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 777−784.
    [27]
    李金博, 朱道光, 伍一宁, 等. 4种寒温带兴安落叶松林土壤CO2, CH4和N2O排放通量特征[J]. 中南林业科技大学学报, 2018, 38(11):95−102.

    Li J B, Zhu D G, Wu Y N, et al. Seasonal variation of emission fluxes of CO2, N2O and CH4 from four typical larch forests in Daxing’anling mountains of China[J]. Journal of Central South University of Forestry & Technology, 2018, 38(11): 95−102.
    [28]
    杨庆朋, 徐明, 刘洪升, 等. 土壤呼吸温度敏感性的影响因素和不确定性[J]. 生态学报, 2011, 31(8):2301−2311.

    Yang Q P, Xu M, Liu H S, et al. Impact factors and uncertainties of the temperature sensitivity of soil respiration[J]. Acta Ecologica Sinica, 2011, 31(8): 2301−2311.
    [29]
    吴鹏, 崔迎春, 赵文君, 等. 改变凋落物输入对喀斯特森林主要演替群落土壤呼吸的影响[J]. 北京林业大学学报, 2015, 37(9):17−27.

    Wu P, Cui Y C, Zhao W J, et al. Effects of litter exclusion and addition on soil respiration of major forest communities at two successional stages in Maolan karst forest of southwestern China[J]. Journal of Beijing Forestry University, 2015, 37(9): 17−27.
    [30]
    彭信浩, 韩海荣, 徐小芳, 等. 间伐和改变凋落物输入对华北落叶松人工林土壤呼吸的影响[J]. 生态学报, 2018, 38(15):5351−5361.

    Peng X H, Han H R, Xu X F, et al. Thinning treatment and litterfall changes influence soil respiration in a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 2018, 38(15): 5351−5361.
    [31]
    段北星, 蔡体久, 宋浩, 等. 寒温带兴安落叶松林凋落物层对土壤呼吸的影响[J]. 生态学报, 2020, 40(4):1357−1366.

    Duan B X, Cai T J, Song H, et al. Effect of soil litterfall on soil respiration in cold-temperate larch forest[J]. Acta Ecologica Sinica, 2020, 40(4): 1357−1366.
    [32]
    于舒, 韩海荣, 康峰峰, 等. 去除凋落物对不同林龄油松次生林土壤呼吸的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(7):122−130.

    Yu S, Han H R, Kang F F, et al. Effect of litter removal on soil respiration Pinus tabulaeformis natural secondary forests at different ages[J]. Journal of Northwest A&F University (Nat. Sci. Ed), 2016, 44(7): 122−130.
    [33]
    Hornsby D C, Lockaby B G, Chappelka A H. Influence of microclimate on decomposition in loblolly pine stands: a field microcosm approach[J]. Canadian Journal of Forest Research, 1995, 25(10): 1570−1577. doi: 10.1139/x95-171
    [34]
    王文杰, 刘玮, 孙伟, 等. 林床清理对落叶松(Larix gmelinii)人工林土壤呼吸和物理性质的影响[J]. 生态学报, 2008, 28(10):4750−4756. doi: 10.3321/j.issn:1000-0933.2008.10.016

    Wang W J, Liu W, Sun W, et al. Influences of forest floor cleaning on the soil respiration and soil physical property of a larch plantation[J]. Acta Ecologica Sinica, 2008, 28(10): 4750−4756. doi: 10.3321/j.issn:1000-0933.2008.10.016
    [35]
    Saurette D D, Chang S X, Thomas B R. Land-use conversion effects on CO2 emissions: from agricultural to hybrid poplar plantation[J]. Ecological Research, 2008, 23(3): 623−633. doi: 10.1007/s11284-007-0420-x
    [36]
    Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1): 71−90. doi: 10.1023/A:1006112000616
    [37]
    Wang X, Zhao J, Wu J, et al. Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China[J]. Forest Ecology and Management, 2011, 261(6): 1053−1060. doi: 10.1016/j.foreco.2010.12.027
    [38]
    Wu J. Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages[J/OL]. Scientific Reports, 2014, 4: 6262 (2014−09−02) [2019−04−17]. https://doi.org/10.1038/srep06262.
    [39]
    李炎真, 谢尧, 张晶玲, 等. 氮添加及林下植被去除对沙地樟子松人工林土壤呼吸组分的影响[J]. 生态学杂志, 2019, 38(10):2997−3006.

    Li Y Z, Xie Y, Zhang J L, et al. Effects of nitrogen addition and understory removal on soil respiratory components in a sandyPinus sylvestris var. mongolica plantation[J]. Chinese Journal of Ecology, 2019, 38(10): 2997−3006.
    [40]
    赵佳琪, 牟长城, 吴彬, 等. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10):13−23.

    Zhao J Q, Mu C C, Wu B, et al. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13−23.
    [41]
    赵冰清, 王云琦, 王彬, 等. 环境因子对重庆缙云山林地土壤呼吸动态特征的作用[J]. 北京林业大学学报, 2014, 36(3):83−89.

    Zhao B Q, Wang Y Q, Wang B, et al. Role of environmental factors on forest soil respiration characteristics in Jinyun Mountain of Chongqing, southwestern China[J]. Journal of Beijing Forestry University, 2014, 36(3): 83−89.
    [42]
    程功, 刘廷玺, 王冠丽, 等. 降雨和凋落物对人工杨树林土壤温室气体通量的影响[J]. 农业环境科学学报, 2019, 38(6):1398−1407. doi: 10.11654/jaes.2018-1252

    Cheng G, Liu T X, Wang G L, et al. Effects of rainfall and litter on soil greenhouse gas fluxes in artificial poplar forest[J]. Journal of Agro-En-vironment Science, 2019, 38(6): 1398−1407. doi: 10.11654/jaes.2018-1252
    [43]
    李伟, 刘小飞, 陈光水, 等. 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响[J]. 林业科学, 2016, 52(11):11−18. doi: 10.11707/j.1001-7488.20161102

    Li W, Liu X F, Chen G S, et al. Effects of litter manipulation on soil respiration in the natural forests and plantations of Castanopsis carlesii in mid-subtropical China[J]. Forestry Science, 2016, 52(11): 11−18. doi: 10.11707/j.1001-7488.20161102
    [44]
    杜睿, 黄建辉, 万小伟, 等. 北京地区暖温带森林土壤温室气体排放规律[J]. 环境科学, 2004(2):12−16. doi: 10.3321/j.issn:0250-3301.2004.02.003

    Du R, Huang J H, Wan X W, et al. Regulations of greenhouse gas emission from warm temperate forest soil in Beijing area[J]. Environmental Science, 2004(2): 12−16. doi: 10.3321/j.issn:0250-3301.2004.02.003
  • Cited by

    Periodical cited type(15)

    1. 李雪,朱宾宾,满秀玲. 温度和水分对寒温带典型森林类型土壤有机碳矿化的影响. 东北林业大学学报. 2025(02): 127-136 .
    2. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤活性有机碳的短期影响. 水土保持研究. 2024(01): 168-177 .
    3. 刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
    4. 祝顺万,刘利霞,胡雪凡,代伟,王月容,李芳. 华北落叶松混交林林下植物群落特征对间伐的响应. 森林工程. 2024(03): 47-55 .
    5. 刘贝贝,蔡体久. 大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征. 水土保持学报. 2024(06): 203-213 .
    6. 沈健,何宗明,董强,林宇,郜士垒. 滨海防护林土壤CO_2排放和土壤因子对计划火烧的响应. 水土保持学报. 2023(01): 254-261 .
    7. 沈健,何宗明,董强,郜士垒,曹光球,林宇,黄政. 滨海沙地两种防护林土壤呼吸月际动态及影响因素. 应用与环境生物学报. 2023(02): 432-439 .
    8. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤氮素的短期影响. 森林工程. 2023(04): 1-9 .
    9. 刘思琪,满秀玲,张頔,徐志鹏. 寒温带4种乔木树种不同径级根系分解及碳氮释放动态. 北京林业大学学报. 2023(07): 36-46 . 本站查看
    10. 沈健,何宗明,董强,林宇,郜士垒. 尾巨桉人工林火烧迹地土壤呼吸组分特征及其与土壤因子的关系. 生态学杂志. 2023(07): 1537-1547 .
    11. 沈健,何宗明,董强,郜士垒,林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响. 植物生态学报. 2023(07): 1032-1042 .
    12. 沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 .
    13. 田慧敏,刘彦春,刘世荣. 暖温带麻栎林凋落物调节土壤碳排放通量对降雨脉冲的响应. 生态学报. 2022(10): 3889-3896 .
    14. 张茹,马秀枝,杜金玲,李长生,梁芝,吴天龙. 模拟增温对大兴安岭兴安落叶松林土壤CO_2通量的影响. 东北林业大学学报. 2022(08): 83-88 .
    15. 张扬,张秋良,李小梅,代海燕,王飞. 兴安落叶松林生长季碳交换对气候变化的响应. 西部林业科学. 2021(05): 73-80+89 .

    Other cited types(4)

Catalog

    Article views (1701) PDF downloads (85) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return