Advanced search
    Liu Siqi, Man Xiuling, Zhang Di, Xu Zhipeng. Dynamics of root decomposition and carbon and nitrogen release of four tree species with different diameter classes in the cold temperate zone[J]. Journal of Beijing Forestry University, 2023, 45(7): 36-46. DOI: 10.12171/j.1000-1522.20210490
    Citation: Liu Siqi, Man Xiuling, Zhang Di, Xu Zhipeng. Dynamics of root decomposition and carbon and nitrogen release of four tree species with different diameter classes in the cold temperate zone[J]. Journal of Beijing Forestry University, 2023, 45(7): 36-46. DOI: 10.12171/j.1000-1522.20210490

    Dynamics of root decomposition and carbon and nitrogen release of four tree species with different diameter classes in the cold temperate zone

    More Information
    • Received Date: November 22, 2021
    • Revised Date: August 25, 2022
    • Accepted Date: June 05, 2023
    • Available Online: June 07, 2023
    • Published Date: July 24, 2023
    •   Objective  The root decomposition and carbon and nitrogen nutrient release characteristics of different tree species in cold temperate zone were discussed in order to provide scientific reference for understanding the root decomposition and carbon and nitrogen nutrient cycling of tree species in cold temperate zone.
        Method  Mesh bag decomposition method was adopted from August 2020 to August 2021. The decomposition rates and the dynamics of carbon and nitrogen elements of fine roots (≤ 2 mm), middle roots (2−5 mm) and coarse roots (5−10 mm) of Betula platyphylla, Populus davidiana, Larix gmelinii and Pinus sylvestris var. mongolica were studied for one consecutive year in the Daxing’an Mountains region of northeastern China.
        Result  (1) After 365 d of decomposition, the annual root decomposition rates of Betula platyphylla, Populus davidiana, Larix gmelinii and Pinus sylvestris var. mongolica varied in 29.75%−39.92%, 33.90%−39.45%, 22.08%−28.80% and 22.62%−33.75%, respectively. The root decomposition rate of different diameter classes was fine root > medium root > coarse root, Betula platyphylla and Populus davidiana were higher than those of Larix gmelinii and Pinus sylvestris var. mongolica. The decomposition rates were higher at the initial stage of decomposition (0−61 d) and lower at 243−365 d. (2) Olson exponential decay model was used to calculate the annual root decomposition coefficient (k) of each tree species. It was found that: the decomposition coefficient of fine root of Betula platyphylla was the highest, which was 0.508 5. The decomposition coefficient of fine root of Betula platyphylla and Populus davidiana was significantly higher than that of Larix gmelinii and Pinus sylvestris var. mongolica in the same diameter class, and the decomposition coefficient of middle root and coarse root of Pinus sylvestris var. mongolica was only about 50% of that of Populus davidiana. (3) At different decomposition stages, root carbon and nitrogen of all diameter sizes of the four tree species showed different degrees of release or enrichment. The release rate of carbon and nitrogen was the highest at the initial stage of decomposition (0−61 d), the release rate of carbon was lower at 243−273 d decomposition stage, and the enrichment of nitrogen was higher at 304−365 d decomposition stage. After one year of decomposition, the release rates of carbon and nitrogen were in the range of 18.68%−34.21% and 14.90%−28.92%, respectively. The total carbon and nitrogen release rates of Betula platyphylla and Populus davidiana were higher than those of Larix gmelinii and Pinus sylvestris var. mongolica. The release rate of carbon from fine roots was the highest, while the release rate of nitrogen from medium and coarse roots was relatively low.
        Conclusion  The decomposition rate and nutrient release rate of carbon and nitrogen of roots of different tree species and diameters differ greatly in different stages. The decomposition rates and carbon and nitrogen nutrient release rates of Betula platyphylla and Populus davidiana are higher than those of Larix gmelinii and Pinus sylvestris var. mongolica.
    • [1]
      杨轩, 李娅芸, 安韶山, 等. 宁南山区典型植物根系分解特征及其对土壤养分的影响[J]. 生态学报, 2019, 39(8): 2741−2751.

      Yang X, Li Y Y, An S S, et al. Effects of typical plant root decomposition on soil nutrients in southern Ningxia[J]. Acta Ecologica Sinica, 2019, 39(8): 2741−2751.
      [2]
      Wardle D A, Bardgett R D, Klironomos J N, et al. Ecologica linkages between aboveground and belowground biota[J]. Science, 2004, 304: 1629−1633. doi: 10.1126/science.1094875
      [3]
      卫星, 张国珍. 树木细根主要研究领域及展望[J]. 中国农学通报, 2008, 24(5): 143−147.

      Wei X, Zhang G Z. Progress and prospect in the main research realms of tree fine roots[J]. Chinese Agricultural Science Bulletin, 2008, 24(5): 143−147.
      [4]
      杨玉盛, 陈光水, 林鹏, 等. 格氏栲天然林与人工林细根生物量、季节动态及净生产力[J]. 生态学报, 2003, 23(9): 1719−1730.

      Yang Y S, Chen G S, Lin P, et al. Fine root distribution, seasonal pattern and production in a native forest and monoculture plantations in subtropical China[J]. Acta Ecologica Sinica, 2003, 23(9): 1719−1730.
      [5]
      宋森, 谷加存, 全先奎, 等. 水曲柳和兴安落叶松人工林细根分解研究[J]. 植物生态学报, 2008, 32(6): 1227−1237.

      Song S, Gu J C, Quan X K, et al. Fine root decomposition of Fraxinus mandshurica and Larix gmelinii plantations[J]. Journal of Plant Ecology, 2008, 32(6): 1227−1237.
      [6]
      Vogt K A, Grier C C, Vogt D J. Production, turnover and nutrient dynamics of above and below ground detritus of world forest[J]. Advances in Ecological Research, 1986, 15(15): 303−377.
      [7]
      杨丽韫, 李文华, 吴松涛. 长白山原始红松阔叶林及其次生林细根分解动态和氮元素的变化[J]. 北京林业大学学报, 2007, 29(6): 10−15.

      Yang L Y, Li W H, Wu S T. Fine root decomposition and nitrogen mineralisation of the primitive Korean pine and broadleaved forests as well as its secondary forests in the Changbaishan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2007, 29(6): 10−15.
      [8]
      翟明普, 蒋三乃, 贾黎明. 沙地杨树刺槐混交林细根动态[J]. 北京林业大学学报, 2002, 24(5/6): 39−44.

      Zhai M P, Jiang S N, Jia L M. Fine root dynamics in mixed plantation of poplar and black locust[J]. Journal of Beijing Forestry University, 2002, 24(5/6): 39−44.
      [9]
      Dornbush M E, Isenhart T M, Raich J W, et al. Quantifying fine-root decomposition: an alternative to buried litterbags[J]. Ecology, 2002, 83(11): 2985−2990. doi: 10.1890/0012-9658(2002)083[2985:QFRDAA]2.0.CO;2
      [10]
      Yang Y S, Chen G S, Guo J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics[J]. Annals of Forest Science, 2004, 61(1): 65−72. doi: 10.1051/forest:2003085
      [11]
      温璐宁, 张红光, 孙涛, 等. 不同土壤深度落叶松细根分解及N动态变化[J]. 生态学报, 2019, 39(13): 4865−4871.

      Wen L N, Zhang H G, Sun T, et al. Fine root decomposition and N dynamics of Larix gmelinii at different soil depths[J]. Acta Ecologica Sinica, 2019, 39(13): 4865−4871.
      [12]
      靳贝贝, 国庆喜. 蒙古栎、白桦根系分解及养分动态[J]. 生态学报, 2013, 33(8): 2416−2424. doi: 10.5846/stxb201208211180

      Jin B B, Guo Q X. Root decomposition and nutrient dynamics of Quercus mongolica and Betula platyphylla[J]. Acta Ecologica Sinica, 2013, 33(8): 2416−2424. doi: 10.5846/stxb201208211180
      [13]
      Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2002: 151−175.
      [14]
      Chen H, Harmon M E, Mark E. Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest: a chronosequence approach[J]. Canada Journal of Forest Research, 2001, 31(2): 246−260. doi: 10.1139/x00-167
      [15]
      廖利平, 杨跃军, 汪思龙, 等. 杉木(Cunninghamia lanceolata)、火力楠(Michelia macclurei)纯林及其混交林细根分布、分解与养分归还[J]. 生态学报, 1999, 19(3): 54−58.

      Liao L P, Yang Y J, Wang S L, et al. Distribution, decomposition and nutrient return of the fine root in pure Cunninghamia lanceolata, Michelia macclurei and the mixed plantations[J]. Acta Ecologica Sinica, 1999, 19(3): 54−58.
      [16]
      Fahey T J, Arthur M A. Further studies of root decomposition following harvest of a northern hardwoods forest[J]. Forest Science, 1944(4): 618−629.
      [17]
      Fahey T J, Hughes J W, Mou P, et al. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest[J]. Forest Science, 1988, 34: 744−768.
      [18]
      张秀娟, 吴楚, 梅莉, 等. 水曲柳和落叶松人工林根系分解与养分释放[J]. 应用生态学报, 2006, 17(8): 1370−1376.

      Zhang X J, Wu C, Mei L, et al. Root decomposition and nutrient release of Fraxinus manshurica and Larix gmelinii plantations[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1370−1376.
      [19]
      范世华, 李培芝, 王力华, 等. 杨树人工林下根系的氮素循环与动态特征[J]. 应用生态学报, 2004, 15(3): 387−390.

      Fan S H, Li P Z, Wang L H, et al. Nitrogen cycling and its dynamic feature in fine roots of poplar trees and herbs[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 387−390.
      [20]
      林成芳, 郭剑芬, 陈光水, 等. 森林细根分解研究进展[J]. 生态学杂志, 2008, 27(6): 1029−1036.

      Lin C F, Guo J F, Chen G S, et al. Research progress in fine root decompostion in forest ecosystem[J]. Chinese Journal of Ecology, 2008, 27(6): 1029−1036.
      [21]
      高明磊, 满秀玲, 段北星. 林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响[J]. 北京林业大学学报, 2021, 43(3): 55−65.

      Gao M L, Man X L, Duan B X. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55−65.
      [22]
      Vogt K A, Grier C C, Vogt D J. Production, turnover, and nutrient dynamics of above and below ground detritus of world forests[J]. Advances in Ecological Research, 1986, 15: 303−377.
      [23]
      王娜, 程瑞梅, 肖文发, 等. 三峡库区马尾松细根分解及其养分释放[J]. 林业科学研究, 2017, 30(1): 18−24.

      Wang N, Cheng R M, Xiao W F, et al. Fine root decomposition and nutrient release of Pinus massoniana in the Three Gorges Reservoir Area[J]. Forest Research, 2017, 30(1): 18−24.
      [24]
      李国雷, 刘勇, 李瑞生, 等. 油松叶凋落物分解速率、养分归还及组分对间伐强度的响应[J]. 北京林业大学学报, 2008, 30(5): 52−57.

      Li G L, Liu Y, Li R S, et al. Responses of decomposition rate‚nutrient return an decomposition of leaf litter to thinning intensities in Pinus tabulaeformis plantation[J]. Journal of Beijing Forestry University, 2008, 30(5): 52−57.
      [25]
      王娜, 程瑞梅, 肖文发, 等. 三峡库区马尾松不同直径细根分解动态及其影响因素[J]. 应用生态学报, 2017, 28(2): 391−398.

      Wang N, Cheng R M, Xiao W F, et al. Dynamics of fine root decomposition and its affecting factors of Pinus massoniana in the Three Gorges Reservoir Area[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 391−398.
      [26]
      Eriksson K E, Blanchette R A, Ander P. Microbial and enzymatic degradation of wood and wood components[M]. Berlin: Springer, 1990.
      [27]
      唐仕姗, 杨万勤, 王海鹏, 等. 川西亚高山3个优势树种不同径级根系分解特征[J]. 应用生态学报, 2015, 26(10): 2921−2927.

      Tang S S, Yang W Q, Wang H P, et al. Decomposition and nutrient release of root with different diameters of three subalpine dominant trees in western area of Sichuan Province, China[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 2921−2927.
      [28]
      庄丽燕. 川西亚高山根系分解及腐殖化特征: 林窗和径级效应[D]. 成都: 四川农业大学, 2018.

      Zhuang L Y. Root decomposition and humification in the western Sichuan: the effects of forest gap and diameter classes[D]. Chengdu: Sichuan Agricultural University, 2018.
      [29]
      潘君, 王传宽, 王兴昌. 3个温带阔叶树种根系长期分解速率研究[J]. 生态学报, 2021, 41(13): 5166−5174.

      Pan J, Wang C K, Wang X C. Seven-year decomposition rates of roots with different diameters for three temperate broadleaf tree species[J]. Acta Ecologica Sinica, 2021, 41(13): 5166−5174.
      [30]
      Burke M K, Raynal D J. Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem[J]. Plant and Soil, 1994, 162(1): 135−146. doi: 10.1007/BF01416099
      [31]
      Lhmus K, Ivask M. Decomposition and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst) at different sites[J]. Plant and Soil, 1995, 168/169: 89−94. doi: 10.1007/BF00029317
      [32]
      王存国, 陈正侠, 马承恩, 等. 细根异速分解的3个可能影响途径[J]. 北京林业大学学报, 2016, 38(4): 123−128.

      Wang C G, Chen Z X, Ma C E, el al. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123−128.
      [33]
      彭倩, 任雨之, 张悦, 等. 粗枝云杉不同径级根系分解过程中4种养分元素的释放特征[J]. 应用与环境生物学报, 2021, 27(1): 8−14.

      Peng Q, Ren Y Z, Zhang Y, et al. The release dynamic of four nutrient elements in decomposing Picea asperata roots of different diameters[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(1): 8−14.
      [34]
      郭培培, 江洪, 余树全, 等. 亚热带6种针叶和阔叶树种凋落叶分解比较[J]. 应用与环境生物学报, 2009, 15(5): 655−659.

      Guo P P, Jiang H, Yu S Q, et al. Comparison of litter decomposition of six species of coniferous and broad-leaved trees in subtropical China[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(5): 655−659.
      [35]
      Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2002: 151−175.
      [36]
      Joshi R K, Garkoti S C. Influence of Nepalese alder on soil physico-chemical properties and fine root dynamics in white oak forests in the central Himalaya, India[J]. Catena, 2021, 200: 105140.
      [37]
      林成芳, 杨玉盛, 陈光水, 等. 杉木人工林细根分解和养分释放及化学组成变化[J]. 亚热带资源与环境学报, 2008, 3(1): 15−23.

      Lin C F, Yang Y S, Chen G S, et al. Decomposition dynamics of fine roots of Cunninghamia lanceolata in mid-subtropics[J]. Journal of Subtropical Resources and Environment, 2008, 3(1): 15−23.
      [38]
      魏圆云, 武志超, 杨万勤, 等. 季节性冻融期亚高山/高山森林细根分解动态[J]. 林业科学, 2013, 49(8): 21−28.

      Wei Y Y, Wu Z C, Yang W Q, et al. Fine root decomposition dynamics during freeze-thaw season in the subalpine/Alpine forests[J]. Scientia Silvae Sinicae, 2013, 49(8): 21−28.
      [39]
      Chen H, Harmon M E, Sexton J, et al. Fine-root decomposition and N dynamics in coniferous forests of the Pacific Northwest, U. S. A.[J]. Canadian Journal of Forest Research, 2002, 32: 320−331. doi: 10.1139/x01-202
      [40]
      Bhattarai K P, Mandal T N, Gautam T P. Fine root decomposition and nutrient release in two tropical forests of Central Himalaya: a comparative and factor controlling approach[J]. Tropical Ecology, 2022, 2(4): 1−13.
    • Related Articles

      [1]Zhang Feifei, Zhu Yan, Han Changzhi. Analysis of chloroplast genome codon preference in Camellia meiocarpa and Camellia vietnamensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240200
      [2]Luo Yongjian, Wang Ru, Zhao Renfei, Lu Xinxiong, Yin Guangkun, Deng Zhijun. Analysis of synonymous codon usage bias in the chloroplast genome of Davidia involucrata[J]. Journal of Beijing Forestry University, 2024, 46(3): 8-16. DOI: 10.12171/j.1000-1522.20220199
      [3]Cui Yanhong, Li Ling, Bai Qian, Yang Qing, Su Shuchai. Identification and expression analysis during ovule development of Hsp90 gene family in Castanea mollissima[J]. Journal of Beijing Forestry University, 2022, 44(11): 10-19. DOI: 10.12171/j.1000-1522.20210272
      [4]Song Tingting, Liang Nansong, Lü Yipin, Cui Jinghong, Yu Lei, Zhao Fujiang, Xu Liang, Zhan Yaguang. Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica[J]. Journal of Beijing Forestry University, 2022, 44(2): 11-21. DOI: 10.12171/j.1000-1522.20210105
      [5]Wang Xue, Song Shuang, Li Meiyu, Bo Wenhao, Li Yingyue, Pang Xiaoming, Cao Ming. Identification and expression analysis based on RNA-Seq of the pectin methylesterase gene family in Ziziphus jujuba[J]. Journal of Beijing Forestry University, 2021, 43(4): 8-16. DOI: 10.12171/j.1000-1522.20200338
      [6]ZHAO Li-hong, ZHOU Fei, GUAN Min-xiao, LIU Chuang, ZHAO Xin, LIU Xue-mei. Analysis of differentially expressed transcripts in early and middle development of Betula platyphylla female inflorescence[J]. Journal of Beijing Forestry University, 2015, 37(4): 104-112. DOI: DOI:10.13332/j.1000-1522.20140301
      [7]LI Hao-yang, SHI Yang, DING Ya-na, XU Ji-chen.. Bioinformatics analysis of expansin gene family in poplar genome.[J]. Journal of Beijing Forestry University, 2014, 36(2): 59-67.
      [8]GUAN Feng-ying, DENG Wang-hua, FAN Shao-hui. Spectral characteristics of Phyllostachys pubescens stand and its differential analysis with typical vegetation[J]. Journal of Beijing Forestry University, 2012, 34(3): 31-35.
      [9]XU Xiao, XU Qian, ZHANG Kai, XU Ji-chen. Advancements in expansin genes of plants.[J]. Journal of Beijing Forestry University, 2010, 32(5): 154-162.
      [10]XU Xiao, HUANG Bing-ru, XU Ji-chen. Analysis of AsEXP1 gene related to drought tolerance in creeping bentgrass[J]. Journal of Beijing Forestry University, 2010, 32(5): 126-131.
    • Cited by

      Periodical cited type(6)

      1. 宋学雨,简尊吉,王少博,党英侨,魏可,王小艺,肖文发. 松材线虫入侵对湖北三峡地区马尾松林水源涵养能力的影响. 林业科学研究. 2024(01): 10-20 .
      2. 黄金莲,崔鸿侠,唐万鹏,胡琛,马致远,雷静品. 虫害对华山松人工林土壤酶活性及碳氮磷化学计量特征的影响. 林业科学. 2023(10): 128-137 .
      3. 周岚,巫大宇,吕秋实,李贤伟,苏宇,郭茂金,尹海锋,吕倩. 松材线虫侵染的马尾松人工林细根形态及生物量分异特征. 生态学报. 2022(15): 6274-6286 .
      4. 高瑞贺,骆有庆,石娟. 松材线虫入侵对马尾松树光合特性的影响. 林业科学研究. 2019(01): 65-73 .
      5. Ruihe Gao,Youqing Luo,Zhuang Wang,Hanjun Yu,Juan Shi. Patterns of biomass, carbon, and nitrogen storage distribution dynamics after the invasion of pine forests by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) in the three Gorges Reservoir Region. Journal of Forestry Research. 2018(02): 459-470 .
      6. 宋秀虎. 寄生线虫入侵对恩施州园林植物平面构成的拓扑性质影响分析. 科技通报. 2016(10): 63-67 .

      Other cited types(4)

    Catalog

      Article views (422) PDF downloads (85) Cited by(10)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return