• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Haichen, Wang Wei, Du Jianhua, Liu Zhaodong, Chen Minsi, Wang Bo, Liu Xiaodong. Land surface fuel load and influencing factors of Pinus tabuliformis and Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2021, 43(6): 33-40. DOI: 10.12171/j.1000-1522.20200364
Citation: Yu Haichen, Wang Wei, Du Jianhua, Liu Zhaodong, Chen Minsi, Wang Bo, Liu Xiaodong. Land surface fuel load and influencing factors of Pinus tabuliformis and Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2021, 43(6): 33-40. DOI: 10.12171/j.1000-1522.20200364

Land surface fuel load and influencing factors of Pinus tabuliformis and Platycladus orientalis plantations

More Information
  • Received Date: November 24, 2020
  • Revised Date: January 11, 2021
  • Available Online: April 16, 2021
  • Published Date: June 29, 2021
  •   Objective  This paper aims to study the land surface fuel load and influencing factors of typical coniferous forests in Beijing, and to establish a fuel load model, so as to provide research basis for the scientific management of fuel.
      Method  Based on stand factors (DBH, tree height, canopy density, crown width, height of the first living branch) and terrain factors (altitude and slope degree), representative Pinus tabuliformis and Platycladus orientalis forests were selected in 7 districts and counties of Beijing. 42 sample plots were set for each forest type to investigate and measure the fuel load of two coniferous forests (upper dead leaves, lower dead leaves, shrubs, herbs, 1 h time-lag dead branches,10 h time-lag dead branches), redundancy analysis (RDA) was used to study the relationship between land surface fuel load and stand factors and terrain factors, and the total fuel load model was established by multiple linear regression.
      Result  (1) The average total fuel load of Pinus tabuliformis forest and Platycladus orientalis forest were 14.31 and 9.78 t/ha, respectively. The lower dead leaf load accounted for the largest proportion of total fuel load of the two coniferous forests. (2) Redundancy analysis (RDA) showed that the fuel load of upper dead leaves and shrubs was positively correlated with DBH, and that of lower dead leaves was positively correlated with canopy density and slope degree. The dead leaf load of upper and lower layers of Platycladus orientalis was positively correlated with tree height and crown width, and negatively correlated with altitude. The fuel load of shrub was positively correlated with tree height and canopy density, and negatively correlated with altitude. The total fuel load, 1 h time-lag, 10 h time-lag dead branch load of the two coniferous forests were positively correlated with DBH, and the herbage fuel load was positively correlated with altitude. (3) The model showed that DBH, tree height and crown width can calculate the total fuel load of Pinus tabuliformis forest, and the first living branch height, crown width and slope degree can calculate the total fuel load of Platycladus orientalis forest.
      Conclusion  Pinus tabuliformis forest has the possibility of developing into a larger forest fire. According to the land surface fuel load, we should focus on the management of forest litter and fuel, timely clean up the fuel under the forest, and reduce the potential forest fire risk. The relationship between fuel load of different forest types, stand factors and terrain factors is different. In fuel management, we should choose reasonable and appropriate measures according to local conditions.
  • [1]
    Forrestel A B, Ramage B S, Moody T, et al. Disease, fuels and potential fire behavior: impacts of sudden oak death in two coastal California forest types[J]. Forest Ecology and Management, 2015, 348: 23−30. doi: 10.1016/j.foreco.2015.03.024
    [2]
    刘晓东, 王博. 森林燃烧主要排放物研究进展[J]. 北京林业大学学报, 2017, 39(12):118−124.

    Liu X D, Wang B. Review on the main emission products released by forest combustion[J]. Journal of Beijing Forestry University, 2017, 39(12): 118−124.
    [3]
    韩梅, 温鹏, 许惠敏, 等. 北京市十三陵林场油松林地表火行为模拟[J]. 北京林业大学学报, 2018, 40(10):95−101.

    Han M, Wen P, Xu H M, et al. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95−101.
    [4]
    王明玉, 周荣伍, 赵凤君, 等. 北京西山森林潜在火行为及防火林带有效宽度分布研究[J]. 火灾科学, 2008, 17(4):209−215. doi: 10.3969/j.issn.1004-5309.2008.04.002

    Wang M Y, Zhou R W, Zhao F J, et al. Potential fire behavior and distribution of effective width of shaded fuel break in Xishan of Beijing[J]. Fire Safety Science, 2008, 17(4): 209−215. doi: 10.3969/j.issn.1004-5309.2008.04.002
    [5]
    满子源, 孙龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型[J]. 林业科学, 2019, 55(7):197−204. doi: 10.11707/j.1001-7488.20190722

    Man Z Y, Sun L, Hu H Q, et al. Prediction model of the spread sate of eight typical surface dead fuel in southern China under windless and flat land[J]. Scientia Silvae Sinicae, 2019, 55(7): 197−204. doi: 10.11707/j.1001-7488.20190722
    [6]
    梁瀛, 李吉玫, 赵凤君, 等. 天山中部天山云杉林地表可燃物载量及其影响因素[J]. 林业科学, 2017, 12(53):153−160.

    Liang Y, Li J M, Zhao F J, et al. Surface fuel loads of Tianshan spruce forests in the central Tianshan Mountains and the impact factors[J]. Scientia Silvae Sinicae, 2017, 12(53): 153−160.
    [7]
    Franke J, Barradas A C S, Borges M A, et al. Fuel load mapping in the brazilian cerrado in support of integrated fire management[J]. Remote Sensing of Environment, 2018, 217: 221−232. doi: 10.1016/j.rse.2018.08.018
    [8]
    Collins B M, Lydersen J M, Fry D L, et al. Variability in vegetation and surface fuels across mixed-conifer-dominated landscapes with over 40 years of natural fire[J]. Forest Ecology and Management, 2016, 381: 74−83. doi: 10.1016/j.foreco.2016.09.010
    [9]
    王叁, 牛树奎, 李德, 等. 云南松林可燃物的垂直分布及影响因子[J]. 应用生态学报, 2013, 24(2):331−337.

    Wang S, Niu S K, Li D, et al. Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 331−337.
    [10]
    金琳, 刘晓东, 任本才, 等. 十三陵林场低山林区针叶林地表可燃物负荷量及其影响因子[J]. 林业资源管理, 2012, 9(2):41−46. doi: 10.3969/j.issn.1002-6622.2012.02.009

    Jin L, Liu X D, Ren B C, et al. Surface fuel loads in the low mountain coniferous forest of Ming Tombs Forest Farm and relevant affecting factors[J]. Forest Resources Management, 2012, 9(2): 41−46. doi: 10.3969/j.issn.1002-6622.2012.02.009
    [11]
    Rothermel R C, Charles W P. Fire in wildland management: predicting changes in chaparral flammability[J]. Journal of Forestry, 1973, 71(10): 640−643.
    [12]
    Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322−330. doi: 10.2307/1932179
    [13]
    Sunjoo L, Kim S Y, Byungdoo L, et al. A dynamic growth model for predicting forest fire fuel loads for Pinus koraiensis stands in South Korea[J]. Journal of The Korean Society of Hazard Mitigation, 2019, 19(3): 121−130. doi: 10.9798/KOSHAM.2019.19.3.121
    [14]
    Francisco J, Romero R, Rafael M, et al. Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 157−167. doi: 10.1016/j.jag.2018.01.003
    [15]
    邸学颖, 王宏良, 姚村人, 等. 大兴安岭森林地表可燃物生物量与林分因子关系的研究[J]. 森林防火, 1994(2):16−18.

    Di X Y, Wang H L, Yao C R, et al. Research of relationship of surface fuel biomass to stand factors in Daxing’anling forests[J]. Forest Fire Prevention, 1994(2): 16−18.
    [16]
    胡海清. 利用林分特征因子预测森林地被可燃物载量的研究[J]. 林业科学, 2005, 41(5):96−100. doi: 10.3321/j.issn:1001-7488.2005.05.016

    Hu H Q. Predicting forest surface fuel load by using forest stand factors[J]. Scientia Silvae Sinica, 2005, 41(5): 96−100. doi: 10.3321/j.issn:1001-7488.2005.05.016
    [17]
    单延龙, 舒立福, 李长江. 森林可燃物参数与林分特征关系[J]. 自然灾害学报, 2004, 13(6):70−75. doi: 10.3969/j.issn.1004-4574.2004.06.012

    Shan Y L, Shu L F, Li C J. A relation between forest combustible parameters and stand characteristics[J]. Journal of Natural Disasters, 2004, 13(6): 70−75. doi: 10.3969/j.issn.1004-4574.2004.06.012
    [18]
    陈宏伟, 常禹, 胡远满. 大兴安岭呼中林区森林死可燃物载量及其影响因子[J]. 生态学杂志, 2008, 27(1):50−55.

    Chen H W, Chang Y, Hu Y M. Load of forest surface dead fuel in Huzhong area of Daxing’anling Mountains and relevant affecting factors[J]. Journal of Ecology, 2008, 27(1): 50−55.
    [19]
    艾也博, 寸应得, 范雅倩, 等. 北京松山油松林地表可燃物负荷量的影响因素[J]. 生态学杂志, 2018, 37(9):2559−2565.

    Ai Y B, Cun Y D, Fan Y Q, et al. Factors affecting surface fuel load of Pinus tabuliformis forest in Songshan, Beijing[J]. Chinese Journal of Ecology, 2018, 37(9): 2559−2565.
    [20]
    陶长森, 牛树奎, 陈锋, 等. 北京山区主要针叶林潜在火行为及冠层危险指数研究[J]. 北京林业大学学报, 2018, 40(9):55−62.

    Tao C S, Niu S K, Chen F, et al. Potential fire behavior and canopy hazard index of main coniferous forests in Beijing mountain area[J]. Journal of Beijing Forestry University, 2018, 40(9): 55−62.
    [21]
    南洋. 北京地区森林火灾发生规律及变化趋势研究[D]. 北京: 北京林业大学, 2018.

    Nan Y. Study on occurrence and trend of forest fire in Beijing Area[D]. Beijing: Beijing Forestry University, 2018.
    [22]
    陈昌笃, 林文棋. 北京的珍贵自然遗产: 植物多样性[J]. 生态学报, 2006, 26(4):969−979. doi: 10.3321/j.issn:1000-0933.2006.04.001

    Chen C D, Lin W Q. Precious natural heritage of Beijing: plant diversity[J]. Acta Ecologica Sinica, 2006, 26(4): 969−979. doi: 10.3321/j.issn:1000-0933.2006.04.001
    [23]
    Burrows N D, Mccaw W L. Fuel characteristics and bush fire control in Banksia low woodlands in western Australia[J]. Environmental Management, 1990, 31(3): 229−236.
    [24]
    Reich R M, Lundquist J E, Bravo V A. Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA[J]. International Journal of Wildland Fire, 2014, 13: 119−129.
    [25]
    田野, 牛树奎, 陈锋, 等. 火干扰后的油松林地表死可燃物负荷及影响因子[J]. 福建农林大学学报(自然科学版), 2018, 47(6):691−697.

    Tian Y, Niu S K, Chen F, et al. Surface dead fuel load and relevant influencing factors of Pinus tabuliformis forest after fire disturbance[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(6): 691−697.
    [26]
    Li Y, Bao W K, Frans B, et al. Drivers of tree carbon storage in subtropical forests[J]. Science of the Total Environment, 2019, 654: 684−693. doi: 10.1016/j.scitotenv.2018.11.024
    [27]
    孙龙, 鲁佳宇, 魏书精, 等. 森林可燃物载量估测方法研究进展[J]. 森林工程, 2013, 29(2):26−31, 37. doi: 10.3969/j.issn.1001-005X.2013.02.005

    Sun L, Lu J Y, Wei S J, et al. Research progress of forest fuel load estimation methods[J]. Forest Engineering, 2013, 29(2): 26−31, 37. doi: 10.3969/j.issn.1001-005X.2013.02.005
    [28]
    高超, 林红蕾, 胡海清, 等. 我国林火发生预测模型研究进展[J]. 应用生态学报, 2020, 31(9):3227−3240.

    Gao C, Lin H L, Hu H Q, et al. A review of models of forest fire occurrence prediction in China[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3227−3240.
    [29]
    邹玉学, 岳迎春, 叶涛, 等. 吉林地区非线性大气加权平均温度模型[J]. 导航定位学报, 2020, 8(4):74−79. doi: 10.3969/j.issn.2095-4999.2020.04.013

    Zou Y X, Yue Y C, Ye T, et al. Nonlinear weighted mean atmospheric temperature mode in Jilin region[J]. Journal of Navigation and Positioning, 2020, 8(4): 74−79. doi: 10.3969/j.issn.2095-4999.2020.04.013
    [30]
    王秋华, 俞新水, 李世友, 等. 森林可燃物的动态特征研究综述[J]. 林业调查规划, 2012, 37(5):40−43. doi: 10.3969/j.issn.1671-3168.2012.05.010

    Wang Q H, Yu X S, Li S Y, et al. Study on dynamic characteristics of forest fuel[J]. Forest Inventory and Planning, 2012, 37(5): 40−43. doi: 10.3969/j.issn.1671-3168.2012.05.010
    [31]
    田晓瑞, 舒立福, 阎海平. 北京地区森林燃烧性研究[J]. 森林防火, 2004, 80(1):23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011

    Tian X R, Shu L F, Yan H P. Study on combustibility of forests in Beijing area[J]. Forest Fire Prevention, 2004, 80(1): 23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011
    [32]
    闫泳霖. 五台林区4种林分类型地表可燃物负荷量及其影响因子研究[D]. 太谷: 山西农业大学, 2016.

    Yan Y L. Study on the surface fuel load and its influence factors about types of stands in WuTai Forest Region[D]. Taigu: Shanxi Agricultural University, 2016.
    [33]
    胡志东. 森林防火[M]. 北京: 中国林业出版社, 2003.

    Hu Z D. Forest fire prevention[M]. Beijing: China Forestry Publishing House, 2003.
    [34]
    周涧青, 刘晓东, 郭怀文. 大兴安岭南部主要林分地表可燃物负荷量及其影响因子研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(6):131−137.

    Zhou J Q, Liu X D, Guo H W. Surface fuel loading and relevant influencing factors of main forest types in southern Daxing’anling[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(6): 131−137.
    [35]
    郭利峰, 牛树奎, 阚振国. 北京八达岭人工油松林地表枯死可燃物负荷量研究[J]. 林业资源管理, 2007(5):53−58. doi: 10.3969/j.issn.1002-6622.2007.05.013

    Guo L F, Niu S K, Kan Z G. Study on dead surface fuel loading of Pinus tabuliformis forest of Badaling Forest Center in Beijing[J]. Forest Resources Management, 2007(5): 53−58. doi: 10.3969/j.issn.1002-6622.2007.05.013
  • Cited by

    Periodical cited type(12)

    1. 孙宇,车勇,敬辽,吴秉岭. 基于通径分析的云南松林地表可燃物载量与林分因子的关系研究. 安徽农业科学. 2024(14): 95-99+155 .
    2. 王康锋,罗永忠,逯真佳,马立鹏,张存焘,郭鹏,马婧,赵亮生. 陇南市主要森林类型死可燃物特征及危险性评价. 北京林业大学学报. 2024(08): 132-138 . 本站查看
    3. 李沛. 杉木林地表可燃物载量特征及影响因素分析——以建瓯市为例. 林业勘察设计. 2024(03): 48-52 .
    4. 李素兮,曹雪梅,陆琪,张小龙,杨帆. 宝塔区冬季枯枝落叶可燃物含水率、可燃物载量与气象因子的相关性分析. 农业灾害研究. 2024(12): 136-138 .
    5. 孙思琦,裴晓娜,韩锐,杨光,邸雪颖,赵曦阳. 降解剂对森林凋落物可溶性有机碳含量的影响及凋落物降解模式比较研究. 生态学报. 2023(05): 2005-2012 .
    6. 鲜明睿,党巍,代斌,刘波,林国刘. 川西南云南松林可燃物载量模型及其影响因素研究. 林业资源管理. 2023(02): 64-69 .
    7. 马云辉,马长明,冯淑瑶,郭延朋,刘炳响. 河北省蒙古栎次生林林下可燃物负荷量及其影响因素. 应用生态学报. 2023(08): 2082-2090 .
    8. 王康锋,罗永忠. 陇南市主要林型可燃物载量与环境因子的关系. 森林与环境学报. 2023(06): 651-658 .
    9. 韩喜越,王晓迪,崔晨曦,单延龙,于渤,尹赛男,曹丽丽. 内蒙古大兴安岭根河林业局主要可燃物类型地表细小可燃物特征及其影响因素. 中南林业科技大学学报. 2023(12): 94-103 .
    10. 巫清芸,吴志伟,Robert E.Keane,林世滔,李顺,单延龙. 赣南地区森林地表死可燃物载量与环境因子的关系. 应用生态学报. 2022(06): 1539-1546 .
    11. 陈思帆,高健,高敏,顾泽,索奥丽,王忆文,刘晓东. 火烧强度对山西太岳山油松林地表可燃物的影响. 西北农林科技大学学报(自然科学版). 2022(10): 68-77 .
    12. 张状,宗树琴,闫星蓉,张浩,黄宏超,翟跃琴,符利勇. 林分和地形因子对崇礼冬奥核心区森林地表可燃物载量的影响. 林业科学. 2022(10): 59-66 .

    Other cited types(8)

Catalog

    Article views (1476) PDF downloads (101) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return