• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xie Yi, Yang Hua. Relationship between stand spatial structure and DBH increment of principal species in natural spruce-fir mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 1-11. DOI: 10.12171/j.1000-1522.20210280
Citation: Xie Yi, Yang Hua. Relationship between stand spatial structure and DBH increment of principal species in natural spruce-fir mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 1-11. DOI: 10.12171/j.1000-1522.20210280

Relationship between stand spatial structure and DBH increment of principal species in natural spruce-fir mixed forest in Changbai Mountains of northeastern China

More Information
  • Received Date: July 28, 2021
  • Revised Date: August 21, 2021
  • Accepted Date: September 01, 2022
  • Available Online: September 05, 2022
  • Published Date: September 24, 2022
  •   Objective  The stability and development possibility of mixed forest are closely related to its spatial structure. Exploring the influence of spatial structure on stand growth plays an important role in promoting the benign development of forest.
      Method  Based on the 5 periods of monitoring data of two fixed sample plots, the proportion of spruce (Picea jezoensis) accumulation in the sample plot was 0.1−0.2 and 0.4, respectively, which were recorded as 1P and 4P. The three parameters of spatial structure were calculated by 4 adjacent tree methods, and the multivariate distribution map was drawn. The changes of DBH increment of spruce, fir (Abies nephrolepis) and Korean pine (Pinus koraiensis) under different diameter classes, mingling degrees and neighborhood comparison in 1P and 4P were compared and analyzed.
      Result  1P and 4P were both medium and strong mixed (M was 0.625 and 0.657, respectively) and randomly distributed. The growth of fir and Korean pine was between sub-dominant state and median state (U = 0.25 − 0.50), the growth of spruce was between sub-dominant state and median state (U = 0.48) in 1P, and was between median state and inferior state in 4P (U = 0.70). The annual DBH increment of spruce and fir increased with the increase of DBH class (P < 0.05) and the mingling degree of subject trees, and the DBH increment of small-diameter spruce and large, medium and small diameter’s fir was significantly correlated with mingling degree (P < 0.05). The annual DBH increment of spruce, fir and Korean pine decreased with the increase of subject trees’ neighborhood comparison, and the correlation between the DBH increment of mid-diameter tree and dominance was significant (P < 0.05). The annual DBH increment of spruce in 1P was lower than that in 4P cloud, while that of Korean pines was opposite.
      Conclusion  There are significant differences in the growth of trees under different diameter classes. Reducing the neighborhood comparison and appropriately increasing the mingling are beneficial to the DBH growth of trees. The competition in different growth stages leads to the difference in the response of different diameter classes to mingling degree and neighborhood comparison. Therefore, different management measures should be taken to adjust and optimize the stand structure to promote the long-term stable development of stand.
  • [1]
    侯向阳, 韩进轩. 长白山红松林主要树种空间格局的模拟分析[J]. 植物生态学报, 1997, 21(3): 47−54. doi: 10.3321/j.issn:1005-264X.1997.03.005

    Hou X Y, Han J X. Simulation analysis of spatial patterns of main species in the Korean-pine broadleaved forest in Changbai Mountain[J]. Acta Phytoecologica Sinica, 1997, 21(3): 47−54. doi: 10.3321/j.issn:1005-264X.1997.03.005
    [2]
    Aguirre O, Hui G Y, von Gadow K, et al. An analysis of spatial forest structure using neighbourhood-based variables[J]. Forest Ecology and Management, 2003, 183(1): 137−145.
    [3]
    安慧君. 阔叶红松林空间结构研究[D]. 北京: 北京林业大学, 2003.

    An H J. Study on the spatial structure of the broadleaved Korean pine forest[D]. Beijing: Beijing Forestry University, 2003.
    [4]
    Uuttera J, Maltamo M. Impact of regeneration method on stand structure prior to first thinning: comparative study North Karelia, Finland vs. Republic of Karelia, Russian Federation[J]. Silva Fennica, 1995, 29(4): 267−285.
    [5]
    惠刚盈. 角尺度: 一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 39−44.

    Hui G Y. The neighbourhood patter: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 39−44.
    [6]
    谢小魁, 苏东凯, 刘正纲, 等. 长白山原始阔叶红松林径级结构模拟[J]. 生态学杂志, 2010, 29(8): 1477−1481. doi: 10.13292/j.1000-4890.2010.0259

    Xie X K, Su D K, Liu Z G, et al. Modeling diameter distribution of primary leaf Korean pine mixed forest in Changbai Mountains[J]. Chinese Journal of Ecology, 2010, 29(8): 1477−1481. doi: 10.13292/j.1000-4890.2010.0259
    [7]
    Uuttera J, Maltamo M, Kuusela K. Impact of forest management history on the state of forests in relation to natural forest succession comparative study, North Karelia, Finland vs. Republic of Karelia, Russian Federation[J]. Forest Ecology & Management, 1996, 83(1−2): 71−85.
    [8]
    Maltamo M, Kangas A, Uuttera J, et al. Comparison of percentile based prediction methods and the Weibull distribution in describing the diameter distribution of heterogeneous Scots pine stands[J]. Forest Ecology and Management, 1999, 133(3): 263−274.
    [9]
    Rubin B D, Manion P D, Faber-Langendoen D. Diameter distributions and structural sustainability in forests[J]. Forest Ecology and Management, 2005, 222(1): 427−438.
    [10]
    惠刚盈, 李丽, 赵中华, 等. 林木空间分布格局分析方法[J]. 生态学报, 2007, 27(11): 4717−4728. doi: 10.3321/j.issn:1000-0933.2007.11.040

    Hui G Y, Li L, Zhao Z H, et al. The comparison of methods in analysis of the tree spatial distribution pattern[J]. Acta Ecologica Sinica, 2007, 27(11): 4717−4728. doi: 10.3321/j.issn:1000-0933.2007.11.040
    [11]
    Schütz J P. Modelling the demographic sustainability of pure beech plenter forests in Eastern Germany[J]. Annals of Forest Science, 2006, 63(1): 93−100. doi: 10.1051/forest:2005101
    [12]
    汤孟平, 徐文兵, 陈永刚, 等. 天目山近自然毛竹林空间结构与生物量的关系[J]. 林业科学, 2011, 47(8): 1−6. doi: 10.11707/j.1001-7488.20110801

    Tang M P, Xu W B, Chen Y G, et al. Relationship between spatial structure and biomass of a close-to-nature Phyllostachys edulis stand in Tianmu Mountain[J]. Scientia Silvae Sinicae, 2011, 47(8): 1−6. doi: 10.11707/j.1001-7488.20110801
    [13]
    吕延杰, 杨华, 张青, 等. 云冷杉天然林林分空间结构对胸径生长量的影响[J]. 北京林业大学学报, 2017, 39(9): 41−47.

    Lü Y J, Yang H, Zhang Q, et al. Effects of spatial structure on DBH increment of natural spruce-fir forest[J]. Journal of Beijing Forestry University, 2017, 39(9): 41−47.
    [14]
    陈梦飞. 青海东部黄土区青海云杉人工林空间结构对径向生长的影响[D]. 北京: 北京林业大学, 2019.

    Chen M F. Effects of spatial structure of Picea crassifolia plantation on radial growth in the loess area of eastern Qinghai[D]. Beijing: Beijing Forestry University, 2019.
    [15]
    吕沅杭, 伊利启, 王儒林, 等. 基于空间结构参数的大兴安岭天然落叶松单木直径生长模型[J]. 林业科学研究, 2021, 34(2): 81−91. doi: 10.13275/j.cnki.lykxyj.2021.02.009

    Lü Y H, Yi L Q, Wang R L, et al. Diameter growth model using spatial structure parameters of natural Larix gmelinii stand in Daxing’anling Mountains, Northeast China[J]. Forest Research, 2021, 34(2): 81−91. doi: 10.13275/j.cnki.lykxyj.2021.02.009
    [16]
    惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [17]
    惠刚盈, Von Gadow K, Albert M. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1): 4−9.

    Hui G Y, von Gadow K, Albert M, et al. A new parameter for stand spatial structure neighbourhood comparison[J]. Forest Research, 1999, 12(1): 4−9.
    [18]
    国家林业局. 森林资源规划设计调查主要技术规定[EB/OL]. (2004−11−15)[2019−06−09]. https://www.forestry.gov.cn/portal/xby/s/1312/content-127438.html.

    State Forestry Administration. Main technical regulations for forest resource planning [EB/OL]. (2004−11−15)[2019−06−09]. https://www.forestry.gov.cn/portal/xby/s/1312/content-127438.html.
    [19]
    柴宗政. 基于相邻木关系的森林空间结构量化评价及R语言编程实现[D]. 杨凌: 西北农林科技大学, 2016.

    Chai Z Z. Quantitative evaluation and R programming of forest spatial structure based on the relationship of neighborhood trees[D]. Yangling: Northwest Agriculture and Forestry University, 2016.
    [20]
    陈亚南, 杨华, 马士友, 等. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 2015, 37(12): 48−58. doi: 10.13332/j.1000-1522.20150171

    Chen Y N, Yang H, Ma S Y, et al. Spatial structure diversity of semi-natural and plantation stands of Larix gmelinii in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12): 48−58. doi: 10.13332/j.1000-1522.20150171
    [21]
    蒋桂娟, 郑小贤. 吉林省汪清林业局云冷杉天然林结构特征研究[J]. 北京林业大学学报, 2012, 34(4): 35−41.

    Jiang G J, Zheng X X. Structural characteristics of natural spruce-fir forest in Wangqing Forestry Bureau of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(4): 35−41.
    [22]
    祝燕, 白帆, 刘海丰, 等. 北京暖温带次生林种群分布格局与种间空间关联性[J]. 生物多样性, 2011, 19(2): 252−259. doi: 10.3724/SP.J.1003.2011.08024

    Zhu Y, Bai F, Liu H F, et al. Population distribution patterns and interspecific spatial associations in warm temperate secondary forests, Beijing[J]. Biodiversity Science, 2011, 19(2): 252−259. doi: 10.3724/SP.J.1003.2011.08024
    [23]
    倪瑞强, 唐景毅, 程艳霞, 等. 长白山云冷杉林主要树种空间分布及其关联性[J]. 北京林业大学学报, 2013, 35(6): 28−35. doi: 10.13332/j.1000-1522.2013.06.013

    Ni R Q, Tang J Y, Cheng Y X, et al. Spatial distribution patterns and associations of main tree species in spruce-fir forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(6): 28−35. doi: 10.13332/j.1000-1522.2013.06.013
    [24]
    Snell R S, Huth A, Nabel J E M S, et al. Using dynamic vegetation models to simulate plant range shifts[J]. Ecography, 2015, 37(12): 1184−1197.
    [25]
    Szymura T H, Szymura M, Macioå A. The effect of ecological niche and spatial pattern on the diversity of oak forest vegetation[J]. Transactions of the Botanical Society of Edinburgh, 2015, 8(4): 505−518.
    [26]
    刘足根, 朱教君, 袁小兰, 等. 辽东山区长白落叶松天然更新调查[J]. 林业科学, 2007, 43(1): 42−49. doi: 10.3321/j.issn:1001-7488.2007.01.007

    Liu Z G, Zhu J J, Yuan X L, et al. Investigation and analysis ofthe natural regeneration of Larix olgensis in mountain regions of eastern Liaoning Province, China[J]. Scientia Silvae Sinicae, 2007, 43(1): 42−49. doi: 10.3321/j.issn:1001-7488.2007.01.007
    [27]
    Xiang W, Lei X, Zhang X. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies, forests in northeast China[J]. Forest Ecology & Management, 2016, 382: 100−109.
    [28]
    徐海, 惠刚盈, 胡艳波, 等. 天然红松阔叶林不同径阶林木的空间分布特征分析[J]. 林业科学研究, 2006, 19(6): 687−691. doi: 10.3321/j.issn:1001-1498.2006.06.003

    Xu H, Hui G Y, Hu Y B, et al. Analysis of spatial distribution characteristics of trees with different diameter classes in natural Korean pine broadleaved forest[J]. Forest Research, 2006, 19(6): 687−691. doi: 10.3321/j.issn:1001-1498.2006.06.003
    [29]
    张泽浦, 方精云, 菅诚. 邻体竞争对植物个体生长速率和死亡概率的影响: 基于日本落叶松种群试验的研究[J]. 植物生态学报, 2000, 24(3): 340−345. doi: 10.3321/j.issn:1005-264X.2000.03.016

    Zhang Z P, Fang J Y, Jian C. Effects of competition on growth rate and probability of death of plant individuals a study based on nursery experiments of Larix leptolrpis populations[J]. Journal of Plant Ecology, 2000, 24(3): 340−345. doi: 10.3321/j.issn:1005-264X.2000.03.016
    [30]
    巫志龙, 周成军, 周新年, 等. 杉阔混交人工林林分空间结构分析[J]. 林业科学研究, 2013, 26(5): 609−615.

    Wu Z L, Zhou C J, Zhou X N, et al. Analysis of stand spatial structure of Cunninghamia lanceolata-broadleaved mixed plantation[J]. Forest Research, 2013, 26(5): 609−615.
    [31]
    曹小玉, 李际平, 委霞. 亚热带典型林分空间结构与林下草本物种多样性的差异特征分析及其关联度[J]. 草业科学, 2019, 36(10): 2466−2475. doi: 10.11829/j.issn.1001-0629.2018-0728

    Cao X Y, Li J P, Wei X. Analysis of the difference and correlation between the spatial structure and understory herbaceous species diversity of typical subtropical forests[J]. Pratacultural Science, 2019, 36(10): 2466−2475. doi: 10.11829/j.issn.1001-0629.2018-0728
    [32]
    童鑫. 从种群遗传和群落组成的空间结构研究群落维持机制[D]. 上海: 华东师范大学, 2015.

    Tong X. Exploring community assembly through the lens of spatial structure: from population genetics to community composition[D]. Shanghai: East China Normal University, 2015.
    [33]
    姚国清, 池桂清, 董兆琪, 等. 红松生长与光照关系的探讨[J]. 生态学杂志, 1985, 4(6): 48−50.

    Yao G Q, Chi G Q, Dong Z Q, et al. Discussion on the relationship between growth and light of Korean pine[J]. Chinese Journal of Ecology, 1985, 4(6): 48−50.
    [34]
    韩大校, 金光泽. 地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响[J]. 北京林业大学学报, 2017, 39(1): 9−19.

    Han D X, Jin G Z. Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 9−19.
  • Related Articles

    [1]Zhang Yun, Yu Yue, Cui Xiaoyang, Wang Haiqi. Spatiotemporal variations of soil moisture content in the Larix gmelinii forest under interference of experimental forest fire in northern Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 94-101. DOI: 10.12171/j.1000-1522.20190182
    [2]Zhang Yun, Yu Yue, Cui Xiaoyang. Temporal and spatial change patterns on soil available phosphorus under an experimental forest fire in Larix gmelinii forests[J]. Journal of Beijing Forestry University, 2019, 41(2): 12-18. DOI: 10.13332/j.1000-1522.20180129
    [3]Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. DOI: 10.13332/j.1000-1522.20170348
    [4]ZHANG Zhu, WANG Chuan-kuan.. Temporal dynamics and vertical distribution of dissolved organic carbon in snowmelt runoff in a temperate deciduous forest in Maoershan region, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 1-8. DOI: 10.13332/j.1000-1522.20160114
    [5]WANG Xiao-hui, GUO Qing-xi, CAI Ti-jiu. Quantitative effect of topography and forest type on snow melting process in spring[J]. Journal of Beijing Forestry University, 2016, 38(2): 83-89. DOI: 10.13332/j.1000-1522.20150317
    [6]JI Ying, CAI Ti-jiu.. Canopy interception in original Korean pine forest: measurement and dividual simulation in Xiaoxing'an Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 41-49. DOI: 10.13332/j.1000-1522.20150084
    [7]LIU Hai-liang, CAI Ti-jiu, MAN Xiu-ling, CHAI Ru-shan, LANG Yan. Effects of major forest types of Xiaoxingan Mountains on the process of snowfall, snow cover and snow melting.[J]. Journal of Beijing Forestry University, 2012, 34(2): 20-25.
    [8]LI Zhou-yuan, ZHOU Jun-hui, LIANG Ying-mei. Lethal doseeffect correlations of chloride snowmelting agent on Euonymus japonicus[J]. Journal of Beijing Forestry University, 2012, 34(1): 64-69.
    [9]YAN Li, CAI Ti-jiu, LIU Hai-liang, BAI Yu. Characteristics of snowpack and snowmelt runoff chemistry in virgin Pinus koraiensis forest[J]. Journal of Beijing Forestry University, 2011, 33(4): 48-54.
    [10]WANG An-zhi, LIU Jian-mei, PEI Tie-fan, JIN Chang-jie. An experiment and model construction of rainfall interception by Picea koraiensis[J]. Journal of Beijing Forestry University, 2005, 27(2): 38-42.
  • Cited by

    Periodical cited type(12)

    1. 丁瑜,彭博识,夏振尧,刘振贤,刘楚鑫. 3D打印弯曲根系拉拔力学特性试验研究. 水文地质工程地质. 2024(01): 82-90 .
    2. 姚亮华,李敏,赵世龙,陈迅,王跃,曾百功,谢守勇. 收获期黄连原位机械拔取力学试验研究. 西南大学学报(自然科学版). 2024(03): 84-91 .
    3. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    4. 郭欢,陈龙,唐丽霞,潘露,阮仕航. 喀斯特区2种护坡灌木单根拉拔摩擦试验. 中国水土保持科学(中英文). 2022(01): 128-135 .
    5. 甘凤玲,韦杰,李沙沙. 紫色土埂坎典型草本根系摩阻特性对土壤含水率的响应. 草业学报. 2022(07): 28-37 .
    6. 赵东晖,冀晓东,张晓,李肖,张海江,薛治国. 冀西北地区白桦根系-土壤界面摩擦性能. 农业工程学报. 2021(03): 124-131 .
    7. 郭欢,唐丽霞,戴全厚,潘露,阮仕航. 土壤粒径对灌木植物根-土摩阻特性影响. 水土保持学报. 2021(06): 83-87+94 .
    8. 苏禹,刘静,李昊,张欣,李雪松,周丹丹. 土壤饱和度对柠条根与两类土界面摩擦特性的影响. 内蒙古林业科技. 2017(02): 1-5 .
    9. 舒安平,高小虎,舒晓锐. 岩石边坡植被恢复工程中的客土稳定性分析. 水土保持通报. 2017(04): 184-188 .
    10. 刘亚斌,余冬梅,付江涛,胡夏嵩,祁兆鑫,朱海丽,李淑霞. 黄土区灌木柠条锦鸡儿根-土间摩擦力学机制试验研究. 农业工程学报. 2017(10): 198-205 .
    11. 夏振尧,张伦,陈毅,薛海龙,许文年. 香根草根系与土壤接触特性及抗拔模型研究. 水生态学杂志. 2016(04): 36-41 .
    12. 田佳,曹兵,及金楠,赵元宵,李才华,郭婷. 花棒沙柳根与土及土与土界面直剪摩擦试验与数值模拟. 农业工程学报. 2015(13): 149-156 .

    Other cited types(26)

Catalog

    Article views (1036) PDF downloads (165) Cited by(38)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return