• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. DOI: 10.13332/j.1000-1522.20170348
Citation: Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. DOI: 10.13332/j.1000-1522.20170348

A dynamic crown interception model based on simulated rainfall experiments of small trees

More Information
  • Received Date: September 25, 2017
  • Revised Date: January 07, 2018
  • Published Date: March 31, 2018
  • Objective The research aims to fully depict the dynamic processes of rainfall interception by tree crown and the effects of crown and rainfall traits on rainfall interception process, and to develop the dynamic interception process simulation model on such basis.
    Method A process-based experiment was conducted under five simulated rainfall intensities (10, 20, 50, 100, 150 mm/hour) to directly quantify tree crown interception and analyze the effects of rainfall traits and crown structure characteristics on interception.
    Result (1) The interception process was composed of three phases, a rapid increase phase, a relatively-stable phase, and a post-rainfall drainage phase, in which 40% (±16%) of maximum interception storage (Cmax) drained off to reach the minimum interception storage (Cmin). (2)Interception is a threshold process, cumulative interception remained relatively stable when cumulative precipitation (Pc) surpassed 12-13 mm on a rainfall-event basis. (3) Both leaf traits (i.e., leaf area, leaf area index, leaf biomass) and branch traits (i.e., branch surface area, branch count, branch length, and woody biomass) significantly affected Cmax and Cmin. The LAI, as an easily-measurable parameter, affects the Cmax and Cmin following a power function.(4) A cumulative interception during rainfall (CIDR) model had been developed based on Pc and LAI: the model worked well and can simulate and predict the cumulative interception amount during rainfall.
    Conclusion Crown interception is a dynamic process with three stages, which can be simulated by a model incorporated cumulative precipitation and LAI as major variables. The model is of great importance to quantify hydrologic processes and water balance in forest ecosystems.
  • [1]
    Llorens P, Domingo F. Rainfall partitioning by vegetation under Mediterranean conditions: a review of studies in Europe[J]. Journal of Hydrology, 2007, 335(1-2): 37-54. doi: 10.1016/j.jhydrol.2006.10.032
    [2]
    Gerrits A M J, Pfister L, Savenije H H G. Spatial and temporal variability of canopy and forest floor interception in a beech forest[J]. Hydrological Processes, 2010, 24(21): 3011-3025. doi: 10.1002/hyp.v24:21
    [3]
    Carlyle-Moses D E, Gash J H C. Rainfall interception loss by foest canopies[M]//Levia D F, Carlyle-Moses D, Tanaka T. Forestry hydrology and biogeochemistry: synthesis of past research and future directions. Berlin: Springer, 2011: 407-423.
    [4]
    Savenije H H G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary[J]. Hydrological Processes, 2004, 18(5): 1507-1511. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2916e4a0aee2441111de00f34e08b5c9
    [5]
    Sutanto S J, Wenninger J, Coenders-Gerrits A M J, et al. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model[J]. Hydrology and Earth System Sciences, 2012, 16(5): 2605-2616. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c3a4e3cc042204c2ffed67a76312bd46
    [6]
    Xiao Q F, Mcpherson E G. Rainfall interception of three trees in Oakland, California[J].Urban Ecosystems, 2011, 14(1): 755-769. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=099621e7f405fe3982c2a7ff0b5f1fa2
    [7]
    Aston A R. Rainfall interception by eight small trees[J]. Journal of Hydrology, 1979, 42(3): 383-396. doi: 10.1016-0022-1694(79)90057-X/
    [8]
    Van Dijk A I J M, Gash J H, Van Gorsel E, et al. Rainfall interception and the coupled surface water and energy balance[J]. Agricultural and Forest Meteorology, 2015, 201-215(6): 402-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63c620bd32397defaf658c245f41f201
    [9]
    Murray S J. Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources[J]. Ecohydrology, 2014, 7(1): 102-114. doi: 10.1002/eco.v7.1
    [10]
    Xiao Q F, McPherson E G, Ustin S L, et al. A new approach to modeling tree rainfall interception[J]. Journal of Geophysical Research Atmospheres, 2000, 105(10): 29173-29188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b8c1a9e9900861470f5163fbd5d5335
    [11]
    Gerrits A M J, Savenije H H G. Treatise on water science[M]. Oxford: Elsevier, 2011.
    [12]
    Li X, Xiao Q, Niu J, et al. Process-based rainfall interception by small trees in Northern China: the effect of rainfall traits and crown structure characteristics[J]. Agricultural and Forest Meteorology, 2016, 218-219(3): 65-73.
    [13]
    Rutter A J. A predictive model of rainfall interception in forests: derivation of the model from observations in a plantation of Corsican pine[J]. Agricultural Meteorology, 1971, 9(2): 367-384.
    [14]
    Rutter A J, Morton A J, Robins P C. A predictive model of rainfall interception in forests(Ⅱ): generalization of the model and comparison with observations in some coniferous and hardwood stands[J]. Journal of Applied Ecology, 1975, 12(l): 367-380.
    [15]
    Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological, 1979, 105(443): 43-55. doi: 10.1002/(ISSN)1477-870X
    [16]
    Gash J H C, Llotd C R, Lachaud G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170(1-4): 79-86. doi: 10.1016/0022-1694(95)02697-N
    [17]
    王彦辉, 于澎涛, 徐德应, 等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报, 1999, 20(6):25-30. http://www.cnki.com.cn/Article/CJFDTotal-BJLY806.004.htm

    Wang Y H, Yu P T, Xu D Y, et al. A preliminary study on transformation of rainfall interception models and parameter's variation[J]. Journal of Beijing Forestry University, 1999, 20(6): 25-30. http://www.cnki.com.cn/Article/CJFDTotal-BJLY806.004.htm
    [18]
    Sato Y, Kumagai T, Kume A, et al. Experimental analysis of moisture dynamics of litter layers-the effect of rainfall conditions and leaf shapes[J]. Hydrological Processes, 2004, 18(3): 3007-3018. doi: 10.1002/hyp.5746
    [19]
    Muzylo A, Llorens P, Valente F, et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370(1-4): 191-206. doi: 10.1016/j.jhydrol.2009.02.058
    [20]
    Guevara-Escobar A, Gonzalez-Sosa E, Ramos-Salinas M, et al. Experimental analysis of drainage and water storage of litter layers[J]. Hydrology and Earth System Science, 2007, 11(5): 1703-1716. doi: 10.5194/hess-11-1703-2007
    [21]
    霍云梅, 毕华兴, 朱永杰, 等. QYJY-503C人工模拟降雨装置降雨特性试验[J].中国水土保持科学, 2015, 13(2):31-36. doi: 10.3969/j.issn.1672-3007.2015.02.005

    Huo Y M, Bi H X, Zhu Y J, et al. Characteristics of artificial rainfall produced by QYJY-503C simulation system[J]. Science of Soil and Water Conservation, 2015, 13(2): 31-36. doi: 10.3969/j.issn.1672-3007.2015.02.005
    [22]
    钟一丹, 贾仰文, 李志威.北京地区近53年最大1小时降雨强度的时空变化规律[J].水文, 2013, 33(1):32-37. http://d.old.wanfangdata.com.cn/Periodical/sw201301007

    Zhong Y D, Jia Y W, Li Z W. Spatial and temporal changes of maximum 1 h precipitation intensity in Beijing region in last 53 years[J]. Journal of China Hydrology, 2013, 33(1):32-37. http://d.old.wanfangdata.com.cn/Periodical/sw201301007
    [23]
    Pitman J I. Rainfall interception by Bracjen in open habitats: relations between leaf area, canopy storage and drainage rate[J]. Journal of Hydrology, 1989, 105(3-4): 317-334. doi: 10.1016/0022-1694(89)90111-X
    [24]
    Calder I R, Hall R L, Rosier P T W, et al. Dependence of rainfall interception on drop size(2): experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species[J]. Journal of Hydrology, 1996, 185(1): 379-388. doi: 10.1016-0022-1694(95)02999-0/
    [25]
    史宇.北京山区主要优势树种森林生态系统生态水文过程分析[D].北京: 北京林业大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10022-1011132763.htm

    Shi Y. Eco-hydrological process analysis on forest ecosystems of major dominant species in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2011. http://cdmd.cnki.com.cn/article/cdmd-10022-1011132763.htm
    [26]
    张艺.北京山区森林植被结构对降雨输入过程的影响[D].北京: 北京林业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213960.htm

    Zhang Y. Effects of forest vegetation structure on rainfall input process in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213960.htm
    [27]
    Wang A, Diao Y, Pei T, et al. A semi-theoretical model of canopy rainfall interception for a broad-leaved tree[J]. Hydrological Processes, 2007, 21(3):2458-2463. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf8f88b63ce20574e8fe3c3a7f41fd38
    [28]
    Keim R F, Skaugset A E, Weiler M. Storage of water on vegetation under simulated rainfall of varying intensity[J]. Advances in Water Resource, 2006, 29(7): 974-986. doi: 10.1016/j.advwatres.2005.07.017
    [29]
    Fleschbein K, Wilcke W, Goller R, et al. Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties[J].Hydrological Processes, 2005, 19(7): 1355-1371. doi: 10.1002/(ISSN)1099-1085
    [30]
    Gómez J A, Giráldez J V, Fereres E. Rainfall interception by olive trees in relation to leaf area[J]. Agricultural Water Management, 2001, 49(1): 65-76.
    [31]
    Galdosa F V, Álvareza C, Garcíaa A, et al. Estimated distributed rainfall interception using a simple conceptual model and moderate resolution imaging spectroradiometer (MODIS)[J]. Journal of Hydrology, 2012, 468(6): 213-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bbf6988f91c91a68ae633cd601da8b8
  • Cited by

    Periodical cited type(5)

    1. 兰玉粉,张升堂,赵文昊. 植物截留动态全过程模型研究. 节水灌溉. 2024(07): 125-130 .
    2. 李海防,俞洁蕾,邵西宁,周春玲. 半湿润地区城市绿地灌木的截留集水功能及其影响因素. 应用生态学报. 2022(05): 1363-1369 .
    3. 高柳威,冀晓东,韩朝,吴春冰. 人工模拟林冠降雨截留试验. 中国水土保持科学. 2020(01): 68-78 .
    4. 丁广,张维江,李娟,王旭东,马芳,姜茂付,姜瑞洋,黄艳. 宁南山区经济林降雨集流机理试验研究. 水土保持通报. 2020(03): 14-19+34 .
    5. 王思思,龙佳,丁涵. 北京市21种植物的叶片吸水性能与冠层雨水截留能力研究. 北京林业大学学报. 2020(09): 100-110 . 本站查看

    Other cited types(6)

Catalog

    Article views (2274) PDF downloads (89) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return