• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Dong Lingbo, Shao Weiwei, Tian Dongyuan, Liu Zhaogang. Height curve of natural Larix gmelinii in the Daxing’anling Mountains of northeastern China based on forest classification[J]. Journal of Beijing Forestry University, 2023, 45(5): 88-96. DOI: 10.12171/j.1000-1522.20210513
Citation: Dong Lingbo, Shao Weiwei, Tian Dongyuan, Liu Zhaogang. Height curve of natural Larix gmelinii in the Daxing’anling Mountains of northeastern China based on forest classification[J]. Journal of Beijing Forestry University, 2023, 45(5): 88-96. DOI: 10.12171/j.1000-1522.20210513

Height curve of natural Larix gmelinii in the Daxing’anling Mountains of northeastern China based on forest classification

More Information
  • Received Date: May 12, 2021
  • Revised Date: March 24, 2023
  • Accepted Date: March 29, 2023
  • Available Online: March 31, 2023
  • Published Date: May 24, 2023
  •   Objective  The tree height curve of main tree species was established based on tree classification, which provided reference for studying the growth law of Larix gmelinii, and provided technical support for forest sustainable management in Daxing’anling Mountains of northeastern China.
      Method  Based on the data of 56 fixed sample plots in Cuigang Forest farm of Daxing’anling Mountains, trees were divided into three grades of dominant, average and crushed trees according to the relative diameter (d) of individual trees. Based on the maximum adjusted coefficient (R2 adj), minimum root mean square error (RMSE) and the minimum red pool information (AIC), the optimal tree height curve basic model of different grades of natural Larix gmelinii was screened out, and the effects of quantile regression and dummy variable regression on the simulation accuracy of tree height curve models of different grades of Larix gmelinii were further evaluated and compared.
      Result  The optimal basic model of Larix gmelinii height curves was Wykoff equation. When the dumb variables of stand classification were added to parameters a and b of Wykoff equation, the model had the best fitting effect. R2 adj, RMSE and AIC of Larix gmelinii tree species curve model were 0.858 8, 1.642 4 and 2 081.902, respectively. There was no difference between the optimal quantile model and the whole stand of Larix gmelinii, and the median model was optimal (τ = 0.5). The three statistics of height curve of the deciduous pine were 0.849 8, 1.693 8 and 2 211.037, respectively. Through comparative analysis, the tree height curve model with tree classification as dummy variable had the best fitting effect.
      Conclusion  The height curve model of Larix gmelinii in the Daxing’anling Mountains, which contains dummy variables for tree classification, has better fitting performance than the basic model, and has good prediction accuracy and adaptability. It can reflect the growth differences of tree height and DBH under different tree grades, and can provide a theoretical basis for the management and growth prediction of Larix gmelinii in the Daxing’anling Mountains region.
  • [1]
    Misik T, Antal K, Kárász I, et al. Nonlinear height-diameter models for three woody, understory species in a temperate oak forest in Hungary[J]. Canadian Journal of Forest Research, 2016, 46(11): 1337−1342. doi: 10.1139/cjfr-2015-0511
    [2]
    赵俊卉, 亢新刚, 刘燕. 长白山主要针叶树种最优树高曲线研究[J]. 北京林业大学学报, 2009, 31(4): 13−18. doi: 10.3321/j.issn:1000-1522.2009.04.003

    Zhao J H, Kang X G, Liu Y. Optimal height-diameter models for dominant coniferous species in Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2009, 31(4): 13−18. doi: 10.3321/j.issn:1000-1522.2009.04.003
    [3]
    Luo R C, Lai C C. Multisensor fusion-based concurrent environment mapping and moving object detection for intelligent service robotics[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 4043−4051.
    [4]
    王冬至, 张冬燕, 王方, 等. 塞罕坝主要立地类型针阔混交林树高曲线构建[J]. 北京林业大学学报, 2016, 38(10): 7−14. doi: 10.13332/j.1000-1522.20150359

    Wang D Z, Zhang D Y, Wang F, et al. Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba, Hebei of northern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 7−14. doi: 10.13332/j.1000-1522.20150359
    [5]
    王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30−36.

    Wang D Z, Zhang D Y, Zhang Z D, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2016, 52(1): 30−36.
    [6]
    樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高−胸径模型比较[J]. 应用生态学报, 2017, 28(9): 2831−2839.

    Fan W, Xu C H, Cui J, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2831−2839.
    [7]
    曾翀, 雷相东, 刘宪钊, 等. 落叶松云冷杉林单木树高曲线的研究[J]. 林业科学研究, 2009, 22(2): 182−189. doi: 10.3321/j.issn:1001-1498.2009.02.006

    Zeng C, Lei X D, Liu X Z, et al. Individual tree height-diameter curves of larch-spruce-fir forests[J]. Forest Research, 2009, 22(2): 182−189. doi: 10.3321/j.issn:1001-1498.2009.02.006
    [8]
    王君杰, 夏宛琦, 姜立春. 基于分位数回归和哑变量模型的大兴安岭兴安落叶松树高−胸径模型[J]. 中南林业科技大学学报, 2020, 40(9): 24−32, 40.

    Wang J J, Xia W Q, Jiang L C. Height-diameter models for Larix gmelinii in Daxing’anling based on quantile regression and dummy variable model[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 24−32, 40.
    [9]
    张剑坛, 李彦朋, 张入匀, 等. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(3): 456−466. doi: 10.17520/biods.2020369

    Zhang J T, Li Y P, Zhang R Y, et al. Height-diameter models based on branch wood density classification for the south subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiversity Science, 2021, 29(3): 456−466. doi: 10.17520/biods.2020369
    [10]
    沈国舫, 翟明普. 森林培育学[M]. 北京: 中国林业出版社, 2011.

    Shen G F, Zhai M P. Silvicuture[M]. Beijing: China Forestry Publishing House, 2011.
    [11]
    Hegyi F. Growth models for tree and stand simulation[J]. Forestry Science, 1974, 26(3): 659−720.
    [12]
    Bohoras B, Cao Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. Forest Ecology and Management, 2014, 319(5): 62−66.
    [13]
    Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
    [14]
    Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419: 240−248.
    [15]
    Zang H, Lei X, Zeng W. Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022
    [16]
    高东启, 邓华锋, 王海宾, 等. 基于哑变量的蒙古栎林分生长模型[J]. 东北林业大学学报, 2014, 21(1): 61−64. doi: 10.3969/j.issn.1000-5382.2014.01.014

    Gao D Q, Deng H F, Wang H B, et al. Dummy variables models in Quercus mongolica growth[J]. Journal of Northeast Forestry University, 2014, 21(1): 61−64. doi: 10.3969/j.issn.1000-5382.2014.01.014
    [17]
    孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2011: 125−160.

    Meng X Y. Forest measurement [M]. Beijing: China Forestry Publishing House, 2011: 125−160.
    [18]
    冯林, 王立明. 林木生长分级数学表述的研究[J]. 内蒙古林学院学报, 1989, 11(1): 9−16.

    Feng L, Wang L M. Mathematical expression on crown classification[J]. Journal of Inner Mongolia Forestry University, 1989, 11(1): 9−16.
    [19]
    玉宝, 乌吉斯古楞, 王百田, 等. 大兴安岭兴安落叶松(Larix gmelinii)天然林分级木转换特征[J]. 生态学报, 2008, 28(11): 5750−5757. doi: 10.3321/j.issn:1000-0933.2008.11.062

    Yu B, Wujisiguleng, Wang B T, et al. Analysis on classified stem transformation characteristic of Larix gmelinii natural forest at Daxing’anling Mountains[J]. Acta Ecologica Sinica, 2008, 28(11): 5750−5757. doi: 10.3321/j.issn:1000-0933.2008.11.062
    [20]
    康永武, 罗宁, 欧建德. 造林密度对南方红豆杉人工林生长性状的影响[J]. 西南林业大学学报(自然科学), 2017, 37(3): 47−52.

    Kang Y W, Luo N, Ou J D. Effects of planting density on the growth traits of Taxus wallichina plantation[J]. Journal of Southwest Forestry University (Natural Science Edition), 2017, 37(3): 47−52.
    [21]
    欧建德, 吴志庄. 峦大杉人工林树冠、根系生长和林木分级的早期密度效应[J]. 东北林业大学学报, 2018, 46(12): 15−19. doi: 10.3969/j.issn.1000-5382.2018.12.003

    Ou J D, Wu Z Z. Early density effect growth of grown and root, and forest classification of Cunninghamia konishii plantation[J]. Journal of Northeast Forestry University, 2018, 46(12): 15−19. doi: 10.3969/j.issn.1000-5382.2018.12.003
    [22]
    李海奎, 法蕾. 基于分级的全国主要树种树高−胸径模型[J]. 林业科学, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013

    Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
    [23]
    段光爽, 李学东, 冯岩, 等. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 163−169.

    Duan G S, Li X D, Feng Y, et al. Developing a height-diameter relationship model with mixed random effects for Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 163−169.
    [24]
    朱光玉, 胡松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 157−162.

    Zhu G Y, Hu S, Fu L Y. Basal area growth model for oak natural forest in Hunan Province based on dummy variable[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 157−162.
    [25]
    曹梦, 潘萍, 欧阳勋志, 等. 基于哑变量的闽楠天然次生林单木胸径和树高生长模型研究[J]. 北京林业大学学报, 2019, 41(5): 88−96. doi: 10.13332/j.1000-1522.20190026

    Cao M, Pan P, Ouyang X Z, et al. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88−96. doi: 10.13332/j.1000-1522.20190026
    [26]
    臧颢, 雷相东, 张会儒, 等. 红松树高−胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8−9.

    Zang H, Lei X D, Zhang H R, et al. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8−9.
    [27]
    吕飞舟. 基于CSI的蒙古栎林木竞争与分级研究[D]. 长沙: 中南林业科技大学, 2016.

    Lü F Z. Study on the forest competition and classification of Quercus mongolica based on CIS[D]. Changsha: Central South University of Forestry and Technology, 2016.
    [28]
    张冬燕, 王冬至, 李晓, 等. 基于分位数回归的针阔混交林树高与胸径的关系[J]. 浙江农林大学学报, 2020, 37(3): 424−431. doi: 10.11833/j.issn.2095-0756.20190461

    Zhang D Y, Wang D Z, Li X, et al. Relationship between height and diameter at breast height (DBH) in mixed coniferous and broadleaved forest based on quantile regression[J]. Journal of Zhejiang A&F University, 2020, 37(3): 424−431. doi: 10.11833/j.issn.2095-0756.20190461
    [29]
    李杰. 基于分级的福建将乐地区栲树树高曲线模型研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(11): 34−42. doi: 10.13207/j.cnki.jnwafu.2019.11.005

    Li J. Classification based height-diameter model for Castanopsis fargesii in Jiangle, Fujian[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(11): 34−42. doi: 10.13207/j.cnki.jnwafu.2019.11.005
    [30]
    雷相东, 李希菲. 混交林生长模型研究进展[J]. 北京林业大学学报, 2003, 25(3): 105−110. doi: 10.3321/j.issn:1000-1522.2003.03.022

    Lei X D, Li X F. A review on growth models of mixed forests[J]. Journal of Beijing Forestry University, 2003, 25(3): 105−110. doi: 10.3321/j.issn:1000-1522.2003.03.022
  • Cited by

    Periodical cited type(10)

    1. 刘丽,郭韦韦,柳晓东,王平,白洁,赵恩全,温晖,周大猷,胡晓生,张志刚,李明. 基于择伐的云冷杉天然林结构动态研究. 西北农林科技大学学报(自然科学版). 2024(12): 39-50 .
    2. 王倩,程顺,李永宁. 间伐对不同龄组华北落叶松人工林直径生长的影响. 林业与生态科学. 2022(02): 121-126 .
    3. 彭泊林,杨华,谢榕. 择伐对长白山云冷杉林生长优势和直径结构异质性的影响. 北京林业大学学报. 2022(05): 34-42 . 本站查看
    4. 陈哲,魏浩亮,周庆营,王海东,丁万林,李艳茹,贾晓静,徐满,王超,陈瑜,谷建才. 抚育间伐对华北落叶松人工林林分结构的影响. 中南林业科技大学学报. 2022(05): 54-64 .
    5. 周钰淮 ,王瑞辉 ,刘凯利 ,张斌 ,李雪惠 ,胡佳怡 . 抚育间伐对川西柳杉人工林生长和林下植被多样性的影响. 中南林业科技大学学报. 2022(06): 65-74+84 .
    6. 覃文渊. 配方施肥对杉木人工林大径材的影响. 江苏农业科学. 2021(11): 98-102 .
    7. 陈德洋. 不同施肥处理对桉树人工林大径材的影响. 湖北农业科学. 2021(S2): 335-338+361 .
    8. 闫东锋,贺文,马瑞婷,杨喜田. 抚育间伐对栓皮栎种群空间分布格局的影响. 生态环境学报. 2020(03): 429-437 .
    9. 唐杨,陈红,童跃伟,朱琪,周旺明,周莉,代力民,于大炮. 长白山阔叶红松林不同强度择伐后关键树种的竞争关系. 应用生态学报. 2019(05): 1469-1478 .
    10. 李远发,何吉安,喻素芳,廖良宁,王宏翔,叶绍明. 南亚热带细叶云南松林大径木择伐后的空间格局. 生态学杂志. 2019(12): 3585-3592 .

    Other cited types(21)

Catalog

    Article views (690) PDF downloads (113) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return