Advanced search
    Ma Yaohua, Liu Hongbing, Li Yuxin, Li Xin, Liu Bin, Yang Shiyun, Zeng Shiqi, Bu Wensheng. Differences in soil water and nutrient storage in subtropical forests under different restoration modes[J]. Journal of Beijing Forestry University, 2023, 45(5): 97-105. DOI: 10.12171/j.1000-1522.20220365
    Citation: Ma Yaohua, Liu Hongbing, Li Yuxin, Li Xin, Liu Bin, Yang Shiyun, Zeng Shiqi, Bu Wensheng. Differences in soil water and nutrient storage in subtropical forests under different restoration modes[J]. Journal of Beijing Forestry University, 2023, 45(5): 97-105. DOI: 10.12171/j.1000-1522.20220365

    Differences in soil water and nutrient storage in subtropical forests under different restoration modes

    More Information
    • Received Date: September 02, 2022
    • Revised Date: October 24, 2022
    • Accepted Date: November 30, 2022
    • Available Online: December 02, 2022
    • Published Date: May 24, 2023
    •   Objective  With the acceleration of industrialization, many natural forests have been destroyed, leading to a significant decline in the quantity and quality of forests. Therefore, many measures have been taken to restore vegetation, mainly including artificial and natural restoration modes. Studying the difference of soil water storage and nutrient storage of the forest under the two different restoration modes will help to compare the advantages and disadvantages of these restoration modes, and provide a theoretical basis for the subtropical vegetation restoration and reconstruction.
        Method  In this study, three typical forests were selected, including the secondary forest that had been naturally restored 35 years after precise cutting, the Chinese fir forest that had been naturally restored 39 years after artificial planting, and the well preserved original forest, to compare the differences of water conservation and nutrient storage capacity of varied restoration modes.
        Result  In terms of water storage capacity, the water holding capacity and saturated water storage capacity of Chinese fir forest and secondary forest were significantly lower than those of old-growth forest, but in terms of retained water storage capacity, Chinese fir forest and secondary forest were considerably higher than the old-growth forest, while there was a similar water storage capacity between Chinese fir forest and secondary forest. In terms of soil nutrient storage, the available nitrogen storage of old-growth forest and secondary forest were significantly higher than those of Chinese fir forests, but the available phosphorus storage of Chinese fir forests was considerably higher than those of secondary and old-growth forests. The carbon, total nitrogen and total phosphorus storages of the old-growth forest were significantly higher than those of Chinese fir forest and secondary forest, and the carbon storage and total nitrogen storage of Chinese fir forest were substantially higher than those of secondary forest, but the total phosphorus storage of Chinese fir forest was significantly lower than those of secondary forest.
        Conclusion  The two restoration modes are similar in soil water conservation but differ considerably in nutrient storage capacity. Different restoration modes should be adopted according to the ecological restoration objectives. The natural restoration mode should be used to improve available soil nitrogen and total phosphorus storage. The artificial restoration mode can be applied to improve nutrient storage of available soil phosphorus, carbon, and total nitrogen.
    • [1]
      王留芳, 陈婵, 朱小叶, 等. 中亚热带不同植被恢复阶段林地土壤磷库特征[J]. 水土保持学报, 2019, 33(1): 178−185. doi: 10.13870/j.cnki.stbcxb.2019.01.029

      Wang L F, Chen C, Zhu X Y, et al. Characteristics of soil phosphorus pool at different vegetation restoration stages in the mid-subtropical region of China[J]. Journal of Soil and Water Conservation, 2019, 33(1): 178−185. doi: 10.13870/j.cnki.stbcxb.2019.01.029
      [2]
      刘斌, 张参参, 汪金松, 等. 江西九连山不同恢复模式林分的物种多样性特征[J]. 林业科学研究, 2020, 33(4): 42−52.

      Liu B, Zhang C C, Wang J S, et al. Characteristic of species diversity in stands of different restoration models in Jiulian Mountain, Jiangxi Province[J]. Forest Research, 2020, 33(4): 42−52.
      [3]
      陈孙华. 衡阳紫色土丘陵坡地不同植被恢复阶段植物群落特征及其与土壤理化性质的耦合关系[J]. 水土保持研究, 2014(5): 7−12. doi: 10.13869/j.cnki.rswc.2014.05.002

      Chen S H. Coupling relationship between plant community characteristics and soil physic chemical properties at different revegetation stages on sloping lands with purple soil in Hengyang of Hunan Province, China[J]. Research of Soil and Water Conservation, 2014(5): 7−12. doi: 10.13869/j.cnki.rswc.2014.05.002
      [4]
      李张敏. 九连山人工和自然恢复森林物种多样性特征及其环境解释[D]. 南昌: 江西农业大学, 2019.

      Li Z M. The characteristics of species diversity and its environmental explanation in the artificial and natural restored Forests of Jiulian Mountain[D]. Nanchang: Jiangxi Agricultural University, 2019.
      [5]
      程欢, 付雨欣, 董洪君, 等. 川中丘陵区不同植被类型土壤理化性质及水文效应[J]. 应用与环境生物学报, 2019, 25(4): 845−853.

      Cheng H, Fu Y X, Dong H J, et al. Physical and chemical properties of soil and the hydrological effects of different vegetation types in the central Sichuan hilly region[J]. Chinese Journal of Applied & Environmental Biology, 2019, 25(4): 845−853.
      [6]
      袁在翔, 关庆伟, 李俊杰, 等. 不同植被恢复模式对紫金山森林土壤理化性质的影响[J]. 东北林业大学学报, 2022, 50(1): 52−57. doi: 10.3969/j.issn.1000-5382.2022.01.009

      Yuan Z X, Guan Q W, Li J J, et al. Effect of various vegetation restoration types on soil physio-chemical properties[J]. Journal of Northeast Forestry University, 2022, 50(1): 52−57. doi: 10.3969/j.issn.1000-5382.2022.01.009
      [7]
      禹娟红, 包振国, 王秉忠, 等. 不同植被恢复模式对土壤理化性质的影响[J]. 人民黄河, 2015, 37(2): 94−98.

      Yu J H, Bao Z G, Wang B Z, et al. Effect of different vegetation restoration patterns on soil physical and chemical properties[J]. Yellow River, 2015, 37(2): 94−98.
      [8]
      Hua F Y, Bruijnzee L A, Meli P, et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches[J]. Science, 2022, 376: 839−844. doi: 10.1126/science.abl4649
      [9]
      刘留辉, 邢世和, 高承芳, 等. 国内外土壤碳储量研究进展和存在问题及展望[J]. 土壤通报, 2009, 40(3): 697−701.

      Liu L H, Xing S H, Gao C F, et al. The research progress, problems and prospects of soil carbon storage at home and board[J]. Chinese Journal of Soil Science, 2009, 40(3): 697−701.
      [10]
      詹书侠, 陈伏生, 胡小飞, 等. 中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性[J]. 生态学报, 2009, 29(9): 4673−4680. doi: 10.3321/j.issn:1000-0933.2009.09.010

      Zhan S X, Chen F S, Hu X F, et al. Soil nitrogen and phosphorus availability in forest ecosystems at different stages of succession in the central subtropical region[J]. Acta Ecologica Sinica, 2009, 29(9): 4673−4680. doi: 10.3321/j.issn:1000-0933.2009.09.010
      [11]
      陈婵, 张仕吉, 李雷达, 等. 中亚热带植被恢复阶段植物叶片, 凋落物, 土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658. doi: 10.17521/cjpe.2019.0018

      Chen C, Zhang S J, Li L D, et al. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China[J]. Chinese Journal of Plant Ecology, 2019, 43(8): 658. doi: 10.17521/cjpe.2019.0018
      [12]
      Gao Y, He N, Yu G, et al. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: a case study in China[J]. Ecological Engineering, 2014, 67: 171−181. doi: 10.1016/j.ecoleng.2014.03.013
      [13]
      何高迅, 王越, 彭淑娴, 等. 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J]. 生态学报, 2020, 40(13): 4425−4435.

      He G X, Wang Y, Peng S X, et al. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4425−4435.
      [14]
      卫茂荣. 一次取样连续测定土壤物理性质的方法[J]. 辽宁林业科技, 1990(1): 56−57.

      Wei M R. A method for continuous determination of soil physical properties by one sampling[J]. Liaoning Forestry Science and Technology, 1990(1): 56−57.
      [15]
      贺翔, 徐长林, 宋美娟, 等. 东祁连山金露梅灌丛不同恢复期碳储量和土壤养分变化[J]. 草业科学, 2019, 36(3): 612−622.

      He X, Xu C L, Song M J, et al. Study on carbon storage and soil nutrient changes at different restoration stages of potentilla parvifolia shrubs in eastern Qilian Mountains[J]. Pratacultural Science, 2019, 36(3): 612−622.
      [16]
      温林生, 邓文平, 彭云, 等. 江西退化红壤区3种森林恢复模式的枯落物和土壤表层水文功能研究[J]. 水土保持学报, 2020, 34(4): 158−163. doi: 10.13870/j.cnki.stbcxb.2020.04.024

      Wen L S, Deng W P, Peng Y, et al. The hydrological functions of litter and soil surface of three forest restoration modes in degraded red soil area of Jiangxi Province[J]. Journal of Soil and Water Conservation, 2020, 34(4): 158−163. doi: 10.13870/j.cnki.stbcxb.2020.04.024
      [17]
      董凌勃, 海旭莹, 汪晓珍, 等. 黄土高原退耕还草地植物群落动态对生态系统碳储量的影响[J]. 生态学报, 2020, 40(23): 8559−8569.

      Dong L B, Hai X Y, Wang X Z, et al. Effects of plant community dynamics on ecosystem carbon stocks since returning farmlands to grassl ands on the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8559−8569.
      [18]
      漆良华. 武陵山区小流域退化土地植被恢复生态学特性研究[D]. 北京: 中国林业科学研究院, 2007.

      Qi L H. Ecological characteristics of vegetation restoration for ecological characteristics of vegetation restoration for degraded lands in a watershed, Wuling Mountain Region[D]. Beijing: Chinese Academy of Forestry, 2007.
      [19]
      曾掌权, 田育新, 邓鹰鸿, 等. 不同植被恢复模式地表径流与土壤贮水能力研究[J]. 湖南林业科技, 2016, 43(4): 81−85. doi: 10.3969/j.issn.1003-5710.2016.04.016

      Zeng Z Q, Tian Y X, Deng Y H, et al. Effect of different vegetation restoration patterns on soil physical and chemical properties[J]. Hunan Forestry Science & Technology, 2016, 43(4): 81−85. doi: 10.3969/j.issn.1003-5710.2016.04.016
      [20]
      辛颖. 阿什河上游天然次生林与人工林小流域水文生态效益对比研究[D]. 哈尔滨: 东北林业大学, 2011.

      Xin Y. Comparison of hydrological ecology between secondary forest and artificial forest small watershed in the upper reaches of Ashihe River[D]. Harbin: Northeast Forestry University, 2011.
      [21]
      周刚. 湖南省水土保持林树种选择及配置模式研究[D]. 北京: 北京林业大学, 2008.

      Zhou G. Study on the trees species selection and configuration model for soil and water conservation forest in Hunan Province[D]. Beijing: Beijing Forestry University, 2008.
      [22]
      Gomi T, Sidle R C, Ueno M, et al. Characteristics of overland flow generation on steep forested hillslopes of central Japan[J]. Journal of Hydrology, 2008, 361(3−4): 275−290. doi: 10.1016/j.jhydrol.2008.07.045
      [23]
      Ghahramani A, Ishikawa Y, Gomi T, et al. Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: a plot-scale study[J]. Catena, 2011, 85(1): 34−47. doi: 10.1016/j.catena.2010.11.005
      [24]
      张慧东. 兴安落叶松林生态系统关键生态过程碳氮分配及其耦合特征研究[D]. 呼和浩特: 内蒙古农业大学, 2017.

      Zhang H D. Study on carbon/nitrogen distribution and its coupling characteristics of key ecological processes in larch (Larix gmelinii) forest ecosystem[D]. Hohhot: Inner Mongolia Agricultural University, 2017.
      [25]
      徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007, 31(2): 175−188.

      Xu X F, Tian H Q,Wan S Q. Climate warming impacts on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology, 2007, 31(2): 175−188.
      [26]
      Li Z, Liu C, Dong Y, et al. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the loess hilly-gully region of China[J]. Soil and Tillage Research, 2017, 166: 1−9. doi: 10.1016/j.still.2016.10.004
      [27]
      欧阳园丽, 吴小刚, 林小凡, 等. 九连山自然保护区土壤有机碳时空变异的耦合效应[J]. 森林与环境学报, 2020, 40(6): 561−568.

      Ouyang Y L, Wu X G, Lin X F, et al. Coupling effect of spatial- temporal variation in soil organic carbon in the Jiulianshan National Nature Reserve[J]. Journal of Forest and Environment, 2020, 40(6): 561−568.
      [28]
      张参参, 吴小刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2): 19−28. doi: 10.13332/j.1000-1522.20180383

      Zhang C C, Wu X G, Liu B, et al. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19−28. doi: 10.13332/j.1000-1522.20180383
      [29]
      Mooney H A, Vitousek P M, Matson P A. Exchange of materials between terrestrial ecosystems and the atmosphere[J]. Science, 1987, 238: 926−932. doi: 10.1126/science.238.4829.926
      [30]
      Compton J, Mallinson D, Glenn C R, et al. Variations in the global phosphorus cycle[M]// Glenn C R, Prevot-Lucas L. Marine authigenesis: from global to microbial. Tulsa: SEPM, 2000: 21−33.
      [31]
      徐丽, 何念鹏. 中国森林生态系统氮储量分配特征及其影响因素[J]. 中国科学:地球科学, 2020, 50(10): 1374−1385.

      Xu L, He N P. Nitrogen storage and allocation in China’s forest ecosystems[J]. Scientia Sinica (Terrae), 2020, 50(10): 1374−1385.
      [32]
      Wang H, Liu S R, Mo J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China[J]. Ecological Research, 2010, 25(6): 1071−1079. doi: 10.1007/s11284-010-0730-2
    • Cited by

      Periodical cited type(12)

      1. 包崇寅,孙永玉,李敏敏,邢洪铭,戚建华. 不同生境濒危植物龙棕种群结构及其动态特征. 西北植物学报. 2024(03): 479-490 .
      2. 赵鑫,陈虹,赵善超,陈兵权,郭来珍,周昊亮. 新疆天山云杉种子雨时空动态分布及种子萌发特性. 浙江农林大学学报. 2024(03): 542-548 .
      3. 靳旭红,于聪,张庭耀,吕松瞳,刘扬,陈乐,龙生,穆怀志. 基于种子活力和苗期生长的枫桦半同胞家系初选. 植物研究. 2024(05): 763-773 .
      4. 刘志宇,张忠辉,杨凯麟,张军,姜润华,吴则甫,王琦,李文华,夏富才. 不同经营方式的云冷杉针阔混交林土壤真菌群落结构1). 东北林业大学学报. 2023(03): 124-129 .
      5. 强亚琪,范春雨,张春雨. 长白山暗针叶林群落物种多样性维持机制. 生态学报. 2023(05): 1884-1891 .
      6. 黄梓良,徐子恒,孙操稳. 青钱柳种子雨的季节动态及土壤种子库特征. 南京林业大学学报(自然科学版). 2023(02): 18-26 .
      7. 陈士刚,邹建军,山昌林,李秀红,芦静,王岗. 硕桦优树选择及不同种源、家系苗期评价. 吉林林业科技. 2023(02): 1-5+23 .
      8. 王莹,文淑均,罗定明,覃延闯,丁涛,刘世男. 珍稀濒危植物元宝山冷杉种实特征及种子萌发特性研究. 广西科学院学报. 2023(02): 161-168 .
      9. 李继祥,余登利,肖息,杨雪,田晓光,龚文斌,邓坦. 贵州宽阔水国家级自然保护区亮叶水青冈种子雨特征. 绿色科技. 2022(07): 67-69 .
      10. 李云红 ,田松岩 ,沃晓棠 ,邵英男 ,刘延坤 ,韩丽冬 ,陈瑶 ,刁云飞 ,刘玉龙 . 伴生东北红豆杉针阔混交林种子雨时空动态. 中南林业科技大学学报. 2022(05): 109-118 .
      11. 江海都,谢伟玲,柴胜丰,唐健民,蒋运生,秦惠珍,韦霄. 喀斯特地区珍贵树种黄枝油杉的种子萌发特性. 广西植物. 2022(06): 951-960 .
      12. 焦洁洁,李领寰,汪建民,孙杰杰,吴初平,姚良锦,王志高,袁位高. 午潮山杉阔混交林种子雨与土壤种子库特征研究. 林业资源管理. 2022(04): 28-35 .

      Other cited types(2)

    Catalog

      Article views (589) PDF downloads (101) Cited by(14)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return