• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhu Zhaoting, Sun Yujun, Liang Ruiting, Ma Jiaxin, Li Jiayi. Estimating DBH of Cunninghamia lanceolata based on crown and competition factors[J]. Journal of Beijing Forestry University, 2023, 45(9): 42-51. DOI: 10.12171/j.1000-1522.20230011
Citation: Zhu Zhaoting, Sun Yujun, Liang Ruiting, Ma Jiaxin, Li Jiayi. Estimating DBH of Cunninghamia lanceolata based on crown and competition factors[J]. Journal of Beijing Forestry University, 2023, 45(9): 42-51. DOI: 10.12171/j.1000-1522.20230011

Estimating DBH of Cunninghamia lanceolata based on crown and competition factors

More Information
  • Received Date: January 14, 2023
  • Revised Date: May 22, 2023
  • Available Online: September 05, 2023
  • Published Date: September 24, 2023
  •   Objective  The rapid development of unmanned aerial vehicle remote sensing has provided a new direction for diameter at breast height (DBH) prediction. This study was suitable for extracting individual tree crown factors from sample plots through unmanned aerial vehicle remote sensing technology, estimating indicators such as DBH and stand basal area per hectare, and achieving accurate and efficient forest resource monitoring and management.
      Method  Based on the ground survey data of 33 Cunninghamia lanceolata plantations in Jiangle National Forest Farm, Fujian Province of eastern China, ten traditional models and two machine learning methods were used to estimate the individual DBH. Based on different combinations of independent variables, the impact of different factors on the estimation of DBH was analyzed.
      Result  According to the fitting results of traditional model parameters, it can be seen that the crown radius was significantly positively correlated with DBH, while the stand density, crown deviation factor, and competition index were all significantly negatively correlated with DBH. The optimal competition index introduced in the traditional model modeling process was CI2, which was related to the overlapping internal angles of tree crowns, and the fitting result of model power logistic model was the best, followed by the power function model (with intercept). The power function model (with intercept) had the best estimation effect when using test data for estimation. RF models all had high fitting effect. Using test data to estimate, different competition indices had varying degrees of improvement in model fitting, and the competition index CI3, which was related to the overlapping area of tree crowns, achieving the best effect. The goodness of fit of SVR model was less than that of random forest and slightly greater than traditional model. When estimating the DBH, the model containing competition index CI4 related to the size of competing trees was the optimal model.
      Conclusion  Both traditional models and machine learning models have achieved certain results in fitting and estimating the DBH of individual trees, and the use of RF models is more effective. Adding competition indices related to tree crowns to different combinations of independent variables in the model can improve the prediction accuracy, increase the R2 and reduce EMA, ERMS, and AIC. The optimal competition index introduced for different models is the competition index CI2 related to overlapping internal angles, and in the machine learning methods, the competition indexes CI3 and CI4 related to the size of target trees and competing trees also achieve good results. The improvement effect of CAI on DBH estimation still needs further verification.
  • [1]
    邓坤枚, 邵彬, 李飞. 长白山北坡云冷杉林胸径、树高结构及其生长规律的分析[J]. 资源科学, 1999, 21(1): 79−86.

    Deng K M, Shao B, Li F. Analysis for diameter, height structures and growth of spruce-fir forest on northern slope of Changbai Mountains[J]. Resource Science, 1999, 21(1): 79−86.
    [2]
    Bi H Q, Turner J, Lambert M J. Additive biomass equations for native eucalypt forest trees of temperate Australia[J]. Trees, 2004(4): 467−479.
    [3]
    Zhou X H, Brandle J R, Schoeneberger M M, et al. Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: shelterbelt-grown Russian-olive[J]. Ecological Modelling, 2007, 202(3): 311−323.
    [4]
    邱思玉, 孙玉军. 长白落叶松人工林单木冠幅模型[J]. 东北林业大学学报, 2021, 49(2): 49−53.

    Qiu S Y, Sun Y J. Individual tree crown width prediction models for Larix olgensis plantation[J]. Journal of Northeast Forestry University, 2021, 49(2): 49−53.
    [5]
    单凯丽, 臧颢, 潘萍, 等. 赣中天然闽楠单木冠幅预测模型的研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 88−96.

    Shan K L, Zang H, Pan P, et al. Individual tree crown width prediction models for natural Phoebe bournei in central Jiangxi Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(1): 88−96.
    [6]
    陈周娟, 程光, 卜元坤, 等. 基于无人机倾斜影像的阔叶林单木参数提取[J]. 林业资源管理, 2022 (1): 132−141.

    Chen Z J, Cheng G, Bu Y K, et al. Single tree parameter extraction of broad-leaved forest based on UAV tilting photography [J]. Forestry Resource Management, 2022 (1): 132−141.
    [7]
    奚祥书 , 夏凯, 杨垠晖 , 等. 结合多光谱影像降维与深度学习的城市单木树冠检测[J]. 遥感学报, 2022, 26(4): 711−721. doi: 10.11834/jrs.20220163

    Xi X S, Xia K, Yang Y H, et al. Urban individual tree crown detection research using multispectral image dimensionality reduction with deep learning[J]. National Remote Sensing Bulletin, 2022, 26(4): 711−721. doi: 10.11834/jrs.20220163
    [8]
    冉崇宪, 李森磊. 利用无人机多光谱影像提取树冠信息[J]. 测绘通报, 2022 (7): 112−117.

    Ran C X, Li S L. Tree canopy delineation using UAV multispectral imagery[J]. Bulletin of Surveying and Mapping, 2022(7): 112−117.
    [9]
    谢运鸿, 荆雪慧, 孙钊, 等. 基于实例分割的高郁闭度林分单木树冠无人机遥感提取[J]. 林业科学研究, 2022, 35(5): 14−21.

    Xie Y H, Jing X H, Sun Z, et al. Tree crown extraction of UAV remote sensing high canopy density stand based on instance segmentation[J]. Forest Research, 2022, 35(5): 14−21.
    [10]
    韦雪花, 王佳, 冯仲科. 北京市13个常见树种胸径估测研究[J]. 北京林业大学学报, 2013, 35 (5): 56−63.

    Wei X H, Wang J, Feng Z K. Estimating diameter at breast height for thirteen common tree species in Beijing[J]. Journal of Beijing Forestry University, 2013, 35 (5): 56−63.
    [11]
    陈瑞波, 朱宁宁, 梅树红, 等. 广西桉树和马尾松单木胸径/冠幅−树高模型构建[J]. 测绘与空间地理信息, 2022, 45(7): 70−73, 84.

    Chen R B, Zhu N N, Mei S H, et al. Individual diameter-height and crown-height prediction models for Pinus massoniana and Eucalyptus in Guangxi[J]. Geomatics & Spatial Information Technology, 2022, 45(7): 70−73, 84.
    [12]
    洪李斌, 卿蕴贤, 田佳赫, 等. 基于混合效应模型的塞罕坝华北落叶松人工林单木去皮胸径生长预测[J]. 林业与生态科学, 2022, 37(2): 127−133.

    Hong L B, Qing Y X, Tian J H, et al. Prediction of single tree inside bark DBH growth of Larix principis-rupprechtii plantation in Saihanba based on mixed effects model [J]. Forestry and Ecological Sciences, 2022, 37(2): 127−133.
    [13]
    谢伊, 杨华. 长白山天然云冷杉针阔混交林主要树种胸径生长与林分空间结构的关系[J]. 北京林业大学学报, 2022, 44(9): 1−11. doi: 10.12171/j.1000-1522.20210280

    Xie Y, Yang H. Relationship between stand spatial structure and DBH increment of principal species in natural spruce-fir mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 1−11. doi: 10.12171/j.1000-1522.20210280
    [14]
    王孝安, 段仁燕, 王明利. 太白红杉单木胸径生长模型的研究[J]. 武汉植物学研究, 2005, 23(2): 157−162.

    Wang X A, Duan R Y, Wang M L. Study on DBH increment model of individual trees growing for Larix chinensis[J]. Journal of Wuhan Botanical Research, 2005, 23(2): 157−162.
    [15]
    陆江. 林分内竞争对林木胸径生长量的影响研究[J]. 林业调查规划, 2021, 46(2): 153−156, 164. doi: 10.3969/j.issn.1671-3168.2021.02.028

    Lu J. Effect of intra-stand competition on tree DBH growth[J]. Forestry Inventory and Planning, 2021, 46(2): 153−156, 164. doi: 10.3969/j.issn.1671-3168.2021.02.028
    [16]
    刘强, 李凤日, 董利虎. 基于竞争因子的落叶松人工林单木生长模型[J]. 植物研究, 2014, 34 (4): 547−553.

    Liu Q, Li F R, Dong L H. Individual tree growth model of larch plantation based on crown competition factors[J]. Bulletin of Botanical Research, 2014, 34 (4): 547−553.
    [17]
    张晔珵, 张怀清, 陈永富, 等. 基于树冠因子的林木竞争指数研究[J]. 林业科学研究, 2016, 29 (1): 80−84.

    Zhang Y C, Zhang H Q, Chen Y F, et al. Study of tree competition index based on crown feature[J]. Forest Research, 2016, 29 (1): 80−84.
    [18]
    雷相东. 机器学习算法在森林生长收获预估中的应用[J]. 北京林业大学学报, 2019, 41(12): 23−36. doi: 10.12171/j.1000-1522.20190356

    Lei X D. Application of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23−36. doi: 10.12171/j.1000-1522.20190356
    [19]
    梁瑞婷, 孙玉军, 李芸. 深度学习和传统方法模拟杉木树高−胸径模型比较[J]. 林业科学研究, 2021, 34(6): 65−72.

    Liang R T, Sun Y J, Li Y. Comparison of deep learning and traditional models to simulate the height-DBH relationship of Chinese Fir[J]. Forest Research, 2021, 34(6): 65−72.
    [20]
    张孟库, 姜立春. 基于机器学习的落叶松树皮厚度预测[J]. 北京林业大学学报, 2022, 44(6): 54−62.

    Zhang M K, Jiang L C. Prediction of bark thickness for Larix gmelinii based on machine learning[J]. Journal of Beijing Forestry University, 2022, 44(6): 54−62.
    [21]
    欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松−云冷杉混交林单木胸径生长预测[J]. 北京林业大学学报, 2019, 41(9): 9−19.

    Ou Q X, Lei X D, Shen C C, et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. Journal of Beijing Forestry University, 2019, 41(9): 9−19.
    [22]
    Che H S, Tan X H, Xiang C W, et al. Stand basal area modelling for Chinese fir plantations using an artificial neural network model[J]. Journal of Forestry Research, 2019, 30(5): 1641–1649. doi: 10.1007/s11676-018-0711-9
    [23]
    孙钊, 潘磊, 乔晶晶, 等. 偏冠对树冠垂直投影面积计算的影响[J]. 林业科学研究, 2022, 35(1): 166−171.

    Su Z, Pan L, Qiao J J, et al. Effect of partial crown on calculation of vertical projection area of crown[J]. Forest Research, 2022, 35(1): 166−171.
    [24]
    Zhou M L, Lei X D, Lu J, et al. Comparisons of competitor selection approaches for spatially explicit competition indices of natural spruce-fir-broadleaf mixed forests[J]. European Journal of Forest Research, 2022, 141: 177−211. doi: 10.1007/s10342-021-01430-8
    [25]
    Ou Q X, Lei X D, Shen C C. Individual tree diameter growth models of larch-spruce-fir mixed forests based on machine learning algorithms[J/OL]. Forests, 2019, 10(2): 187[2023−01−02]. https://doi.org/10.3390/f10020187.
    [26]
    Malone T, Liang J J. A bark thickness model for white spruce in Alaska northern forests[J/OL]. International Journal of Forestry Research, 2014, 2009: 1−5[2023−01−02]. https://doi.org/10.1155/2009/876965.
    [27]
    何亚平, 费世民, 徐嘉, 等. 川西南山地云南松林窗边界木偏冠现象与影响因素[J]. 北京林业大学学报, 2007, 29(6): 66−71.

    He Y P, Fei S M, Xu J, et al. Crown inclination of Pinus yunnanensis gap border trees and the influencing factors in the mountain area of southwest of Sichuan, southwestern China[J]. Journal of Beijing Forestry University, 2007, 29(6): 66−71.
  • Cited by

    Periodical cited type(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 .

    Other cited types(3)

Catalog

    Article views (642) PDF downloads (95) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return