• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Xiaojuan, Lu Junqian, Chang Yingying, Zhong Shanchen, Su Xiaohua, Zhang Bingyu. Genetic transformation of Populus alba × P. glandulosa ‘84K’ with AtDME1 and its chemical-inducible expression analysis[J]. Journal of Beijing Forestry University, 2020, 42(6): 26-32. DOI: 10.12171/j.1000-1522.20190068
Citation: Wu Xiaojuan, Lu Junqian, Chang Yingying, Zhong Shanchen, Su Xiaohua, Zhang Bingyu. Genetic transformation of Populus alba × P. glandulosa ‘84K’ with AtDME1 and its chemical-inducible expression analysis[J]. Journal of Beijing Forestry University, 2020, 42(6): 26-32. DOI: 10.12171/j.1000-1522.20190068

Genetic transformation of Populus alba × P. glandulosa ‘84K’ with AtDME1 and its chemical-inducible expression analysis

More Information
  • Received Date: January 24, 2019
  • Revised Date: March 21, 2019
  • Available Online: May 29, 2020
  • Published Date: June 30, 2020
  • ObjectiveDNA methylation is an important epigenetic modification that plays an essential role in plant growth and development. In this study, the chemically-induced promoter and the Arabidopsis thaliana demethylation transferase gene AtDME1 were introduced into the genome of Populus alba × P. glandulosa ‘84K’, and the expression of AtDME1 was effectively induced by 17-β-estradiol treatment. The expression characteristics of AtDME1 in transgenic poplar plants were investigated. This study laid a foundation for the establishment of poplar methylation-induced variation system and genetic improvement of poplars.
    MethodThe chemically-induced promoter and AtDME1 were transformed into genome of P. alba × P. glandulosa ‘84K’ using Agrobacterium-mediated transformation. Traditional PCR and DNA sequencing were used to identify the transgenic plants in hygromycin resistant plants. The chemical inducer 17-β-estradiol was used to induce expression of AtDME1 in in vitro leaves of a transgenic clone for 0, 3, 6, 12, 24, 48, 96 and 144 hours, and the expression of AtDME1 gene was detected by quantitative real-time PCR (qRT-PCR).
    ResultA total of 224 hygromycin resistant buds were obtained, among them six hygromycin resistant plants were screened. Finally, six transgenic plants were identified by molecular methods, which were named as AD-1−6. Results of qRT-PCR showed that the expression of AtDME1 reached its highest level after 3 hours treatment of 17-β-estradiol, and its expression gradually decreased after12 hour’s treatment.
    ConclusionThe chemical inducer 17-β-estradiol can rapidly and efficiently induce the expression of AtDME1 gene in transgenic poplar, which lays a solid foundation for further study on the mechanism of DME1 gene in the regulation of poplar genome methylation. It lays a solid foundation for the study of the chemical expression characteristics of poplar.
  • [1]
    Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2011, 1809(8): 360−368. doi: 10.1016/j.bbagrm.2011.04.006
    [2]
    Zhong X, Du J, Hale C J, et al. Molecular mechanism of action of plant DRM De Novo DNA methyltransferases[J]. Cell, 2014, 157(5): 1050−1060. doi: 10.1016/j.cell.2014.03.056
    [3]
    Liu C, Li H, Lin J, et al. Genome-wide characterization of DNA demethylase genes and their association with salt response in Pyrus[J/OL]. Genes, 2018, 9(8): 398[2019−01−30]. http://creativecommons.org/licenses/by/4.0/.
    [4]
    Cao D, Ju Z, Gao C, et al. Genome-wide identification of cytosine-5 DNA methyltransferases and demethylases in Solanum lycopersicum[J]. Gene, 2014, 550(2): 230−237. doi: 10.1016/j.gene.2014.08.034
    [5]
    Zhu J K. Active DNA demethylation mediated by DNA glycosylases[J]. Annual Review of Genetics, 2009, 43(1): 143−166. doi: 10.1146/annurev-genet-102108-134205
    [6]
    Choi Y, Gehring M, Johnson L, et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis[J]. Cell, 2002, 110(1): 33−42. doi: 10.1016/S0092-8674(02)00807-3
    [7]
    Gong Z, Morales-Ruiz T, Ariza R R, et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002, 111(6): 803−814. doi: 10.1016/S0092-8674(02)01133-9
    [8]
    Ortega-Galisteo A P, Morales-Ruiz T, Ariza R R, et al. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks[J]. Plant Molecular Biology, 2008, 67(6): 671−681. doi: 10.1007/s11103-008-9346-0
    [9]
    Park J S, Frost J M, Park K, et al. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2017, 114(8): 2078−2083. doi: 10.1073/pnas.1620592114
    [10]
    Zhang H, Zhu J K. Active DNA demethylation in plants and animals[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77(28): 161−173.
    [11]
    Brocklehurst S, Watson M, Carr I M, et al. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1)[J/OL]. PLoS ONE, 2018, 13(2): e0192170[2018−12−23]. https://pubmed.ncbi.nlm.nih.gov/29466369/.
    [12]
    Movahedi A, Sang M, Zhang J, et al. Functional analyses of PtROS1-RNAi in poplars and evaluation of its effect on DNA methylation[J]. Journal of Plant Biology, 2018, 61(4): 227−240. doi: 10.1007/s12374-017-0410-7
    [13]
    Zuo J, Niu Q W, Chua N H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants[J]. The Plant Journal, 2000, 24(2): 265−273. doi: 10.1046/j.1365-313x.2000.00868.x
    [14]
    代丽娟, 郑唐春, 刘彩霞, 等. 烟草化学诱导表达系统的建立[J]. 植物研究, 2016, 36(6):917−924. doi: 10.7525/j.issn.1673-5102.2016.06.016

    Dai L J, Zheng T C, Liu C X, et al. Establishment of a chemical-inducible gene expression system in tabacoo[J]. Bulletin of Botanical Research, 2016, 36(6): 917−924. doi: 10.7525/j.issn.1673-5102.2016.06.016
    [15]
    Zuo J R, Niu Q W, Møller S G, et al. Chemical-regulated, site-specific DNA excision in transgenic plants[J]. Nature Biotechnology, 2001, 19(2): 157−161. doi: 10.1038/84428
    [16]
    Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis[J]. Plant Physiology, 2003, 131(1): 167−176. doi: 10.1104/pp.011494
    [17]
    李芳, 许颖, 张姣, 等. 超量表达细胞D型周期蛋白CY-CD3;1影响拟南芥根的发育[J]. 植物生理学通讯, 2008, 44(3):431−435.

    Li F, Xu Y, Zhang J, et al. Overexpression of D-type cyclin CYCD3;1 affects root development Arbidopsis thaliana L.[J]. Plant Physiology Communications, 2008, 44(3): 431−435.
    [18]
    梁立雄, 常英英, 高亚南, 等. AtMET1基因克隆及化学诱导表达分析[J]. 林业科学研究, 2016, 29(6):946−950.

    Liang L X, Chang Y Y, Gao Y N, et al. AtMET1 gene cloning and chemical-inducible expression analysis[J]. Forest Research, 2016, 29(6): 946−950.
    [19]
    常英英, 高亚南, 梁立雄, 等. AtDME1化学诱导表达载体的构建及其瞬时表达[J]. 东北林业大学学报, 2016, 44(2):75−79. doi: 10.3969/j.issn.1000-5382.2016.02.018

    Chang Y Y, Gao Y N, Liang L X, et al. Constructing a chemical-inducible expression vector of AtDME1 and its transient expression[J]. Journal of Northeast Forestry University, 2016, 44(2): 75−79. doi: 10.3969/j.issn.1000-5382.2016.02.018
    [20]
    Xu M J, Dong J F. Enhancing terpenoid indole alkaloid production by inducible expression of mammalian Bax in Catharanthus roseus cells[J]. Science in China Series C: Life Sciences, 2007, 50(2): 234−241. doi: 10.1007/s11427-007-0030-4
    [21]
    Okuzaki A, Konagaya K I, Nanasato Y, et al. Estrogen-in-ducible GFP expression patterns in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2011, 30(4): 529−538. doi: 10.1007/s00299-010-0963-0
    [22]
    Sreekala C, Wu L, Gu K, et al. Excision of a selectable marker in transgenic rice(Oryza sativa L.) using a chemically regulated Cre / lox P system[J]. Plant Cell Reports, 2005, 24(2): 86−94. doi: 10.1007/s00299-004-0909-5
    [23]
    李琳洁, 杨莉, 李芳, 等. 柑橘无标记转基因转化体系的建立[J]. 湖南农业大学学报(自然科学版), 2010, 36(6):649−652.

    Li L J, Yang L, Li F, et al. Marker-free transgenic system of Citrus[J]. Journal of Hunan Agricultural University (Natural Sciences), 2010, 36(6): 649−652.
    [24]
    张健, 徐金相, 孔英珍, 等. 化学诱导激活型拟南芥突变体库的构建及分析[J]. 遗传学报, 2005, 32(10):1082−1088.

    Zhang J, Xu J X, Kong Y Z, et al. Generation of chemical-inducible activation tagging t-DNA insertion lines of Arbidopsis thaliana[J]. Acta Genetica Sinica, 2005, 32(10): 1082−1088.
    [25]
    Leech D M, Snyder M T, Wetzel R G. Natural organic matter and sunlight accelerate the degradation of 17ss-estradiol in water[J]. Science of the Total Environment, 2009, 407(6): 2087−2092. doi: 10.1016/j.scitotenv.2008.11.018
    [26]
    Sparkes I A, Runions J, Kearns A, et al. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nature Protocols, 2006, 1(4): 2019−2025. doi: 10.1038/nprot.2006.286
    [27]
    王丽娜, 王玉成, 杨传平. 84K杨愈伤组织再生体系和直接分化再生体系遗传转化的比较性研究[J]. 植物研究, 2017, 37(4):542−548. doi: 10.7525/j.issn.1673-5102.2017.04.009

    Wang L N, Wang Y C, Yang C P, et al. The comparative study of callus and direct differation regenaration system of 84K poplar[J]. Bulletin of Botanical Research, 2017, 37(4): 542−548. doi: 10.7525/j.issn.1673-5102.2017.04.009
    [28]
    常英英. 拟南芥甲基化相关基因化学诱导表达载体的构建及杨树遗传转化[D]. 北京: 中国林业科学研究院, 2015.

    Chang Y Y. Construction of chemical-inducible expression vectors of three methylation-related genes from Arabidopsis thaliala and genetic transformation of poplars[D]. Beijing: Chinese Academy of Forestry, 2015.
    [29]
    古同华, 丁博, 陈小强, 等. 小麦原位转化技术的现状及展望[J]. 分子植物育种, 2017, 15(2):565−570.

    Gu T H, Ding B, Chen X Q, et al. Advances and prosepcts of in planta transformation for wheat[J]. Molecular Plant Breeding, 2017, 15(2): 565−570.
    [30]
    Aoyama T, Reynolds P H S. Glucocorticoid-inducible gene expression in plants[J]. Heredity, 1999, 83(4): 500−501.
  • Related Articles

    [1]Wang Xin, Liu Xinyue, Mu Yanmei, Liu Peng, Jia Xin. Changes in vegetation phenology and its responses to climatic factors in the Mu Us Desert[J]. Journal of Beijing Forestry University, 2023, 45(7): 61-75. DOI: 10.12171/j.1000-1522.20220443
    [2]Yu Peiyang, Tong Xiaojuan, Li Jun, Zhang Jingru, Liu Peirong, Xie Han. Simulation analysis on phenology of woody plants in the warm-temperate region of China[J]. Journal of Beijing Forestry University, 2021, 43(11): 28-39. DOI: 10.12171/j.1000-1522.20200367
    [3]Zhang Jingru, Tong Xiaojuan, Meng Ping, Zhang Jinsong, Liu Peirong. Comparative study on phenology in a mountainous plantation in northern China based on vegetation index, chlorophyll fluorescence and carbon flux[J]. Journal of Beijing Forestry University, 2020, 42(11): 17-26. DOI: 10.12171/j.1000-1522.20200113
    [4]Zhang Xu, Song Wenqi, Zhao Huiying, Zhu Liangjun, Wang Xiaochun. Variation of July NDVI recorded by tree-ring index of Pinus koraiensis and Abies nephrolepis forests in the southern Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 9-17. DOI: 10.13332/j.1000-1522.20180295
    [5]Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020
    [6]YANG Shu-ping, ZHANG De-shun, LI Yue-zhong, JU Rui-ting, LIU Ming. Evaluation system for the resistance of landscape tree to diseases and pests and its application in Shanghai under climate warming[J]. Journal of Beijing Forestry University, 2017, 39(8): 87-97. DOI: 10.13332/j.1000-1522.20160346
    [7]CHEN Jing-ru, DU Yan-jun, ZHANG Yu-hong, PAN Jie, CHEN Fei-fei, DAI Wu-jun, LIU Tong, ZHOU Zhi-qiang. Peak flowering responses to the global warming of woody species in Heilongjiang Province,northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 50-56. DOI: 10.13332/j.1000-1522.20160186
    [8]WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91.
    [9]SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80.
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(1)

    1. 杨博文,刘凤莲,陈洪敏. 三江并流区森林植被时空演变及驱动因素. 森林工程. 2025(01): 108-125 .

    Other cited types(6)

Catalog

    Article views (2933) PDF downloads (110) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return