• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Haibo, Zhang Jianjun, Zhang Jianan, Yang Yunbin, Gao Siyuan, Liu Junting. Exploration on statistical methods for analyzing correlations between rainfall and sediment discharge in base period by hydrologic method in the Xinshui River Basin, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 91-104. DOI: 10.12171/j.1000-1522.20190125
Citation: Zhang Haibo, Zhang Jianjun, Zhang Jianan, Yang Yunbin, Gao Siyuan, Liu Junting. Exploration on statistical methods for analyzing correlations between rainfall and sediment discharge in base period by hydrologic method in the Xinshui River Basin, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 91-104. DOI: 10.12171/j.1000-1522.20190125

Exploration on statistical methods for analyzing correlations between rainfall and sediment discharge in base period by hydrologic method in the Xinshui River Basin, Shanxi Province of northern China

More Information
  • Received Date: March 06, 2019
  • Revised Date: December 08, 2019
  • Available Online: October 15, 2020
  • Published Date: December 13, 2020
  •   Objective  This paper analyzes the trend and relationship between rainfall and sediment discharge in the Xinshui River Basin in Shanxi Province of northern China from 1958 to 2015 based on the daily rainfall and sediment discharge data, aiming to select the best statistical method according to the effects of rainfall spatial distribution and six statistical criteria of rainfall on calculating the relationship between rainfall and sediment discharge used for the “hydrologic method” in base period. The six statistical criteria of rainfall included the annual rainfall, the flood season rainfall, the erosion rainfall, the mild sand-producing rainfall, the moderate sand-producing rainfall and the heavy sand-producing rainfall.
      Method  Mann-Kendall method was selected to analyze the trend of rainfall and sediment discharge, double mass curve was applied to determine the base period of “hydrologic method”, and Pearson correlation analysis was used to compare the results of correlation between rainfall and sediment discharge.
      Result  There was no significant changing trend of annual rainfall in Xinshui River Basin, but the annual sediment yield showed a significant decreasing trend. The Pearson correlation coefficients between rainfall and sediment yield under the six statistical standards were ordered from high to low as follows: the heavy sand-producing rainfall, annual rainfall, the erosion rainfall, the moderate sand-producing rainfall, the mild sand-producing rainfall and flood season rainfall. The contribution of rainfall with low intensity but high amount on sediment was small. The correlation coefficient between rainfall and sediment yield can be enhanced by eliminating the invalid rainfall for sediment. The correlation coefficients between rainfall and sediment discharge of Wucheng, Huangtu, and Puxian rainfall stations were higher, and the results of Daning, Sang’e rainfall stations were lower.
      Conclusion  The change of annual sediment yield is directly related to the human activities such as the Three North Protection Forest Project and the construction of check dams. Sediment discharge is mainly caused by heavy rainstorm in summer and autumn. The heavy sand-producing rainfall can be used to analyze the relationship between rainfall and sediment discharge, and the flood season rainfall is not suitable for the analysis of the relationship between rainfall and sediment discharge. Invalid rainfall for sediment will increase the deviation of the correlation coefficient between rainfall and sediment discharge. Rainfall with short time duration and high amount should be selected to analyze the correlation coefficient between rainfall and sediment discharge when rainfall intensity data are scarce. The relationship between rainfall and sediment discharge is influenced by the spatial distribution of rainfall stations at the watershed scale.
  • [1]
    张守红, 刘苏峡, 莫兴国, 等. 降雨和水保措施对无定河流域径流和产沙量影响[J]. 北京林业大学学报, 2010, 32(4):161−168.

    Zhang S H, Liu S X, Mo X G, et al. Impacts of precipitation variation and soil and water conservation measures on runoff and sediment yield in the Wuding River Basin, middle reaches of the Yellow River[J]. Journal of Beijing Forestry University, 2010, 32(4): 161−168.
    [2]
    曹文洪, 姜乃森, 付玲燕. 浑河流域水土保持减沙效益分析[J]. 人民黄河, 1993(11):18−21, 50.

    Cao W H, Jiang N S, Fu L Y. Analysis on water and sediment reduction benefits through soil conservation measures of the Hun River Basin[J]. Yellow River, 1993(11): 18−21, 50.
    [3]
    赵文林, 焦恩泽, 王广任, 等. 三川河水沙变化及人类活动影响[J]. 人民黄河, 1992(11):22−26.

    Zhao W L, Jiao E Z, Wang G R, et al. Water and sediment variations of Sanchuan River and effects by human activities[J]. Yellow River, 1992(11): 22−26.
    [4]
    焦恩泽. 孤山川流域水沙变化趋势的分析[J]. 人民黄河, 1992(6):15−19.

    Jiao E Z. Analysis on variation trend of runoff and sediment of Gushanchuan Watershed[J]. Yellow River, 1992(6): 15−19.
    [5]
    熊维新, 王宏, 张治忠. 渭河流域水利水保措施减水减沙效益初步分析[J]. 人民黄河, 1992(7):21−25.

    Xiong W X, Wang H, Zhang Z Z. Analysis on benefits of hydraulic projects and soil conservation measures in reductions of runoff and sediment in Wei River[J]. Yellow River, 1992(7): 21−25.
    [6]
    慕星, 张晓明. 皇甫川流域水沙变化及驱动因素分析[J]. 干旱区研究, 2013, 30(5):933−939.

    Mu X, Zhang X M. The variation of runoff volume and sediment load and its driving factors in Huangfuchuan River Watershed[J]. Arid Zone Research, 2013, 30(5): 933−939.
    [7]
    莫莉. 基于水文法的北洛河流域水土保持措施减沙水代价分析[D]. 杨凌: 西北农林科技大学, 2008.

    Mo L. Runoff cost of sediment control of soil and water conservation practices with hydrologic methods in Beiluo River Basin[D]. Yangling: Northwest A&F University, 2008.
    [8]
    徐学选, 高朝侠, 赵娇娜. 1956—2009年延河水沙变化特征及其驱动力研究[J]. 泥沙研究, 2012(2):12−18. doi: 10.3969/j.issn.0468-155X.2012.02.003.

    Xu X X, Gao Z X, Zhao J N. Trends of runoff and sediment load of Yanhe River Basin and their related driving forces during 1956−2009[J]. Journal of Sediment Research, 2012(2): 12−18. doi: 10.3969/j.issn.0468-155X.2012.02.003.
    [9]
    许炯心. 黄河中游多沙粗沙区1997—2007年的水沙变化趋势及其成因[J]. 水土保持学报, 2010, 24(1):1−7.

    Xu J X. Trend of sediment yield in the coarser sediment-producing area in the middle Yellow River Basin in the period 1997−2007 and the formative cause[J]. Journal of Soil and Water Conservation, 2010, 24(1): 1−7.
    [10]
    毕彩霞. 黄河中游皇甫川流域产沙性降雨及其对径流输沙的影响[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2013.

    Bi C X. Study on watershed sediment yield rainfall and contributions of the watershed sediment yield rainfall to runoff and sediment in Huangfuchuan River Basin[D]. Beijing: Graduate University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education), 2013.
    [11]
    王正文, 韩学士, 赵昕, 等. 皇甫川流域水沙变化原因分析[J]. 中国水土保持, 2000(5):26−27.

    Wang Z W, Han X S, Zhao X, et al. Analysis of water and sediment changes in Huangfuchuan Watershed[J]. Soil and Water Conservation in China, 2000(5): 26−27.
    [12]
    罗文生, 赵辉. 基于次降雨条件下的武水流域径流输沙规律研究[J]. 西南林学院学报, 2010, 30(1):6−10.

    Luo W S, Zhao H. Study on runoff and sediment transport of Wushui watershed in Hunan Province based on the data of single rainfall[J]. Journal of Southwest Forestry University, 2010, 30(1): 6−10.
    [13]
    姚文艺, 冉大川, 陈江南. 黄河流域近期水沙变化及其趋势预测[J]. 水科学进展, 2013, 24(5):607−616.

    Yao W Y, Ran D C, Chen J N. Recent changes in runoff and sediment regimes and future projections in the Yellow River Basin[J]. Advances in Water Science, 2013, 24(5): 607−616.
    [14]
    王国庆, 张建云, 贺瑞敏, 等. 黄土高原昕水河流域径流变化归因定量分析[J]. 水土保持研究, 2014, 21(6):295−298.

    Wang G Q, Zhang J Y, He R M, et al. Attribution of runoff change for the Xinshui River Basin in the Loess Plateau of China[J]. Research of Soil and Water Conservation, 2014, 21(6): 295−298.
    [15]
    张建兴, 马孝义, 屈金娜. 昕水河流域水沙变化趋势及成因分析[J]. 人民黄河, 2007, 29(12):36−38. doi: 10.3969/j.issn.1000-1379.2007.12.018.

    Zhang J X, Ma X Y, Qu J N. Water and sediment trends and their causes in the Xinshui River Watershed[J]. Yellow River, 2007, 29(12): 36−38. doi: 10.3969/j.issn.1000-1379.2007.12.018.
    [16]
    Mann H B. Nonparametric test against trend[J]. Econometrica, 1945, 13(3): 245−259. doi: 10.2307/1907187.
    [17]
    Kendall M G. Rank correlation methods[M]. 4th ed. London: Charles Griffin, 1975.
    [18]
    袁满, 王文圣, 叶濒璘. 有序聚类分析法的改进及其在水文序列突变点识别中的应用[J]. 水文, 2017, 37(5):8−11. doi: 10.3969/j.issn.1000-0852.2017.05.002.

    Yuan M, Wang W S, Ye B L. Improvement of sequential clustering method and its application to diagnose jump points of hydrological series[J]. Journal of China Hydrology, 2017, 37(5): 8−11. doi: 10.3969/j.issn.1000-0852.2017.05.002.
    [19]
    穆兴民, 张秀勤, 高鹏, 等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文, 2010, 30(4):47−51. doi: 10.3969/j.issn.1000-0852.2010.04.011

    Mu X M, Zhang X Q, Gao P, et al. Theory of double mass curves and its applications in hydrology and meteorology[J]. Journal of China Hydrology, 2010, 30(4): 47−51. doi: 10.3969/j.issn.1000-0852.2010.04.011
    [20]
    赵玉. 渭河流域典型水库淤积及其对径流输沙的影响[D]. 北京: 中国科学院大学(教育部水土保持与生态环境研究中心), 2014.

    Zhao Y. Typical reservoirs sedimentation and their’s influence on runoff and sediment transport in Weihe River Basin[D]. Beijing: Graduate University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education), 2014.
    [21]
    岳晓丽. 黄河中游径流及输沙格局变化与影响因素研究[D]. 杨凌: 西北农林科技大学, 2016.

    Yue X L. Spatial patterns and trends in runoff and sediment load in the middle reaches of the Yellow River and their potential cause[D]. Yangling: Northwest A&F University, 2016.
    [22]
    张建勇, 高冉, 胡骏, 等. 灰色关联度和Pearson相关系数的应用比较[J]. 赤峰学院学报(自然科学版), 2014, 30(11):1−2.

    Zhang J Y, Gao R, Hu J, et al. Application comparison of gray relation analysis and the Pearsons’s correlation coefficient[J]. Journal of Chifeng University (National Science Edition), 2014, 30(11): 1−2.
    [23]
    司海松. 黄河中游陕西境内多沙粗沙区水沙变化研究[D]. 西安: 西安理工大学, 2017.

    Si H S. Study on variation of runoff and sediment in coarser sediment-producing area of Shaanxi Province in the middle reaches of the Yellow River[D]. Xi’an: Xi’an University of Technology, 2017.
    [24]
    谢云, 刘保元, 章文波. 侵蚀性降雨标准研究[J]. 水土保持学报, 2000, 14(4):6−11. doi: 10.3321/j.issn:1009-2242.2000.04.002.

    Xie Y, Liu B Y, Zhang W B. Study on standard of erosive rainfall[J]. Journal of Soil and Water Conservation, 2000, 14(4): 6−11. doi: 10.3321/j.issn:1009-2242.2000.04.002.
    [25]
    柳莎莎, 王厚杰, 张勇, 等. 气候变化和人类活动对黄河中游输沙量影响的甄别[J]. 海洋地质与第四纪地质, 2014(4):41−50.

    Liu S S, Wang H J, Zhang Y, et al. Impacts of climate change and human activity on sediment discharge in the middle reach of the Yellow River[J]. Marine Geology & Quaternary Geology, 2014(4): 41−50.
    [26]
    王万忠. 黄土地区降雨特性与土壤流失关系的研究Ⅲ—关于侵蚀性降雨的标准问题[J]. 水土保持通报, 1984(2):58−63.

    Wang W Z. Study on the relations between rainfall characteristics and loss of soil in the loess region[J]. Bulletin of Soil and Water Conservation, 1984(2): 58−63.
    [27]
    周佩华, 王占礼. 黄土高原土壤侵蚀暴雨标准[J]. 水土保持通报, 1987, 7(1):38−44.

    Zhou P H, Wang Z L. Soil erosion storm rainfall standard in the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 1987, 7(1): 38−44.
    [28]
    王占礼, 焦菊英. 黄土高原长历时土壤侵蚀暴雨标准初探[J]. 水土保持通报, 1992, 12(3):25−28.

    Wang Z L, Jiao J Y. A preliminary discussion on the criterion of long duration rainstorm for soil erosion in the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 1992, 12(3): 25−28.
    [29]
    Wischmeier W H, Smith D D. Predicting rainfall erosion losses: a guide to conservation planning [M]//Agricultural handbook. Washington: US Department of Agriculture, 1978.
    [30]
    何毅. 黄河河口镇至潼关区间降雨变化及其水沙效应[D]. 杨凌: 西北农林科技大学, 2016.

    He Y. Variations of erosive and extreme rainfall and their effects on runoff and sediment load in Hekouzhen-Tongguan reach of the Yellow River[D]. Yangling: Northwest A&F University, 2016.
    [31]
    张岩, 朱清科. 黄土高原侵蚀性降雨特征分析[J]. 干旱区资源与环境, 2006, 20(6):99−103. doi: 10.3969/j.issn.1003-7578.2006.06.019.

    Zhang Y, Zhu Q K. Statistic analysis of erosive rainfall on the Loess Plateau[J]. Journal of Arid Land Resources and Environment, 2006, 20(6): 99−103. doi: 10.3969/j.issn.1003-7578.2006.06.019.
    [32]
    冉大川, 焦鹏, 姚文艺, 等. 泾河东川近期水沙变化对高强度人类活动的响应[J]. 水土保持学报, 2015, 29(2):23−29.

    Ran D C, Jiao P, Yao W Y, et al. Recent variation of runoff and sediment in response to the high intensity human activities in Dongchuan Basin of Jinghe River[J]. Journal of Soil and Water Conservation, 2015, 29(2): 23−29.
    [33]
    赵越. 祖厉河流域水沙变化特征及水土保持减水减沙效益研究[D]. 兰州: 甘肃农业大学, 2016.

    Zhao Y. Study on variation characteristics of water and sediment and sediment reduction benefits of water and soil conservation in Zuli River Basin[D]. Lanzhou: Gansu Agricultural University, 2016.
    [34]
    于一鸣. 黄河流域水土保持减沙计算方法存在问题及改进途径探讨[J]. 人民黄河, 1996(1):26−30.

    Yu Y M. Problem in calculation methods of sediment reduction by soil and water conservation measures in the Yellow River Basin and approach to improvement[J]. Yellow River, 1996(1): 26−30.
  • Cited by

    Periodical cited type(4)

    1. 张琳,王国利. 洪水预报模型输入与输出的误差分布及相关性分析. 水文. 2022(01): 23-28 .
    2. 蔡凯,高维常,潘文杰,姜超英,张恒,李洪勋,林叶春. 贵州烟田土壤pH、交换性钙镁和CaCO_3含量分布特征及其相互关系. 土壤通报. 2022(03): 532-539 .
    3. 郑雨凝,李杨,鞠琴,宁忠瑞,王国庆,鲍振鑫. 1951—2015年叶尼塞河流域水文气象要素演变特征. 华北水利水电大学学报(自然科学版). 2021(03): 27-32+40 .
    4. 夏露,马耘秀,宋孝玉,秦扬芳,毕如田,吕春娟. 黄河中游昕水河流域水沙变化及归因研究. 水土保持学报. 2021(06): 109-115 .

    Other cited types(0)

Catalog

    Article views (1206) PDF downloads (45) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return