Processing math: 100%
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Guodong, Du Yan, Ding Peiyan, Guo Kexin, Yin Zhongdong. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. Journal of Beijing Forestry University, 2020, 42(7): 12-22. DOI: 10.12171/j.1000-1522.20190236
Citation: Chen Guodong, Du Yan, Ding Peiyan, Guo Kexin, Yin Zhongdong. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. Journal of Beijing Forestry University, 2020, 42(7): 12-22. DOI: 10.12171/j.1000-1522.20190236

Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model

More Information
  • Received Date: May 21, 2019
  • Revised Date: September 10, 2019
  • Available Online: June 08, 2020
  • Published Date: August 13, 2020
  •   Objective  This paper aims to establish a single tree DBH growth model of Picea schrenkiana in Xinjiang of northwestern China in order to predict the DBH growth of Picea schrenkiana and provide a theoretical basis for the forestry department to manage P. schrenkiana forest.
      Method  Taking Picea schrenkiana as the research object, based on the 70 pieces of Tianshan Mountain pure forest retesting sample plots in Xinjiang, a total of 1 914 viable standing trees were measured in the sample plots, and 1 531 sets of data were randomly selected for training data, 383 sets of data for test data. Contrasting and analyzing the application of traditional single-tree DBH model and mixed effects model in the spruce single-tree DBH model, considering the density level effect, sample plot effect and nesting two-level effect when using the R language nlme module to construct the mixed effects model, and using the average absolute error (|ˉE|), root mean square error(RMSE), average prediction error (MPE), total relative error (TRE) to test the fitting effects of the model.
      Result  The mixed effects model (R2adj = 0.762) was superior to the traditional breast diameter model (R2adj = 0.505). In the mixed effects model, that based on the nesting two-level was the best. The average absolute error (|ˉE|), the root mean square error (RMSE), the average prediction error (MPE), the total relative error (TRE), and the adjustment decision coefficient (R2adj) were 0.589 cm, 0.804 cm, 0.966%, − 0.042%, 0.899, respectively. The fitting effect of mixed effects model from high to low was: nesting two-level mixed effects model (R2adj = 0.899) > sample plot mixed effects model (R2adj = 0.766) > density level mixed effects model (R2adj = 0.762). The power function can effectively eliminate the influence of heteroscedastic structure. The first-order autoregressive matrix AR (1) can effectively eliminate the time-dependent effect of the data.
      Conclusion  The mixed model of DBH growth of Picea schrenkiana can be used as the main model for the prediction of DBH diameter in the Picea schrenkiana of Xinjiang, in which the mixed effects model of nesting density level effect and sample plot effect is the best for predicting the DBH diameter (R2adj = 0.899). This study shows that the mixed effects model is an effective method for predicting the single tree DBH of the Picea schrenkiana in Xinjiang, and provides a theoretical basis and a new method for predicting the single tree DBH of the large-scale Xinjiang Picea schrenkiana.
  • [1]
    刘四海, 曾伟生. 马尾松宏观尺度单木生长模型研究[J]. 林业资源管理, 2017(2):28−33.

    Liu S H, Zeng W S. Study on macroscopic single-tree growth model of masson pine[J]. Forest Resources Management, 2017(2): 28−33.
    [2]
    甘世书, 贺鹏, 肖前辉, 等. 利用分段建模方法建立海南省主要树种立木材积模型[J]. 中南林业科技大学学报, 2018, 38(5):18−22.

    Gan S S, He P, Xiao Q H, et al. Using the segmentation modeling method to establish the timber product model of main tree species in Hainan Province[J]. Journal of Central South University of Forestry and Technology, 2018, 38(5): 18−22.
    [3]
    张茂震, 王广兴, 刘安兴. 基于森林资源连续清查资料估算的浙江省森林生物量及生产力[J]. 林业科学, 2009, 45(9):13−17. doi: 10.3321/j.issn:1001-7488.2009.09.003

    Zhang M Z, Wang G X, Liu A X. Forest biomass and productivity in Zhejiang Province based on continuous inventory data of forest resources[J]. Scientia Silvae Sinica, 2009, 45(9): 13−17. doi: 10.3321/j.issn:1001-7488.2009.09.003
    [4]
    王超, 尤海舟, 毕君. 小五台山自然保护区红桦林的群落结构与演替[J]. 中南林业科技大学学报, 2017, 37(5):69−73.

    Wang C, You H Z, Bi J. Community structure and succession of red birch forest in Xiaowutai Mountain Nature Reserve[J]. Journal of Central South University of Forestry and Technology, 2017, 37(5): 69−73.
    [5]
    杜纪山. 用二类调查样地建立落叶松单木直径生长模型[J]. 林业科学研究, 1991, 12(2):160−164.

    Du J S. Establishing individual tree diameter growth model for larch using sample survey plots[J]. Forestry Research, 1991, 12(2): 160−164.
    [6]
    马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型研究:Ⅰ.直径生长量模型[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2):99−105.

    Ma W, Lei X D, Xu G, et al. Study on the growth model of Mongolian natural forest single tree (I): diameter growth model[J]. Journal of Northwest A&F University (Nat Sci Ed), 2015, 43(2): 99−105.
    [7]
    刘洋, 亢新刚, 郭艳荣, 等. 长白山主要树种直径生长的多元回归预测模型:以云杉为例[J]. 东北林业大学学报, 2012, 40(2):1−4. doi: 10.3969/j.issn.1000-5382.2012.02.001

    Liu Y, Kang X G, Guo Y R, et al. Multivariate regression prediction model for diameter growth of main tree species in Changbai Mountain: taking spruce as an example[J]. Journal of Northeast Forestry University, 2012, 40(2): 1−4. doi: 10.3969/j.issn.1000-5382.2012.02.001
    [8]
    李春明.混合效应模型在森林生长模拟研究中的应用[D].北京: 中国林业科学研究院, 2010.

    Li C M. Application of mixed effect model in forest growth simulation research[D]. Beijing: Chinese Academy of Forestry, 2010.
    [9]
    李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. doi: 10.11707/j.1001-7488.20120311

    LI C M. DBH growth of Chinese fir forest based on two-level linear mixed effect model[J]. Scientia Silvae Sinica, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311
    [10]
    彭娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3):19−27.

    Peng W, Li F R, Dong L H. Single tree growth model of Larix olgensis in Heilongjiang Province[J]. Journal of Nanjing Forestry University (Natural Science), 2018, 42(3): 19−27.
    [11]
    Budhathoki C B, Lynch T B, Guldin J M. Individual tree growth models for natural even-aged short leaf pine (Pinus echinata Mill.)[J]. Southern Journal of Applied Forestry, 2006, 32(1): 5−11. doi: 10.1093/sjaf/32.1.5
    [12]
    Fabiancc U, Williamw O. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model[J]. Forest Ecology & Management, 2008, 256(3): 438−445. doi: 10.1016/j.foreco.2008.04.046
    [13]
    王少杰, 邓华锋, 向玮, 等. 基于混合模型的油松林分蓄积量预测模型的建立[J]. 西北农林科技大学学报(自然科学版), 2018, 46(2):29−38, 46.

    Wang S J, Deng H F, Xiang W, et al. Establishment of prediction model of Pinus tabulaeformis stand volume based on hybrid model[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(2): 29−38, 46.
    [14]
    段光爽, 李学东, 冯岩, 等. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):163−169.

    Duan G S, Li X D, Feng Y, et al. Mixed effect model of natural secondary forest tree height curve of Larix principis-rupprechtii[J]. Journal of Nanjing Forestry University (Natural Science), 2018, 42(2): 163−169.
    [15]
    樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高-胸径模型比较[J]. 应用生态学报, 2017, 28(9):2831−2839.

    Fan W, Xu C H, Cui J, et al. Comparison of high-diameter model of Chinese fir tree in Dabieshan Area based on mixed effect[J]. The Journal of Applied Ecology, 2017, 28(9): 2831−2839.
    [16]
    李春明, 唐守正. 基于非线性混合模型的落叶松云冷杉林分断面积模型[J]. 林业科学, 2010, 46(7):106−113. doi: 10.11707/j.1001-7488.20100716

    Li C M, Tang S Z. A model for the fractal area of larch-fir-fir forest based on nonlinear mixed model[J]. Scientia Silvae Sinica, 2010, 46(7): 106−113. doi: 10.11707/j.1001-7488.20100716
    [17]
    Adame P, Hynynen J, Canellas I, et al. Individual-tree diameter growth model for rebollo oak (Quercus pyrenacia Willd.) coppices[J]. Forest Ecology and Management, 2008, 255(3/4): 1011−1022.
    [18]
    Rafael C, Gregorio M. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach[J]. Silva Fennica, 2005, 39(1): 37−54.
    [19]
    柏云龙. 天山云杉群落结构及物种多样性研究[D]. 合肥: 安徽农业大学, 2013.

    Bai Y L. Study on community structure and species diversity of Picea schrenkiana[D]. Hefei: Anhui Agricultural University, 2013.
    [20]
    王燕, 赵士洞. 天山云杉林生物生产力的地理分布[J]. 植物生态学报, 2000, 24(2):186−190. doi: 10.3321/j.issn:1005-264X.2000.02.011

    Wang Y, Zhao S D. Biomass productivity geographical distribution of Picea schrenkiana[J]. Journal of Plant Ecology, 2000, 24(2): 186−190. doi: 10.3321/j.issn:1005-264X.2000.02.011
    [21]
    郭靖, 齐成, 张东亚, 等. 新疆森林资源现状分析[J]. 防护林科技, 2015(12):69−70.

    Guo J, Qi C, Zhang D Y, et al. Current forest resources in Xinjiang[J]. Protection Forest Science and Technology, 2015(12): 69−70.
    [22]
    郭仲军, 黄继红, 路兴慧, 等. 基于第七次森林资源清查的新疆天然林生态系统服务功能[J]. 生态科学, 2015, 34(4):118−124.

    Guo Z J, Huang J H, Lu X H, et al. Xinjiang natural forest ecosystem service function based on the seventh forest resource inventory[J]. Ecological Science, 2015, 34(4): 118−124.
    [23]
    何相宜, 刘肖肖, 戴伟. 天山云杉林土壤有机碳矿化特征[J]. 西北林学院学报, 2019, 34(2):1−7.

    He X Y, Liu X X, Dai W. Characteristics of soil organic carbon mineralization in Picea schrenkiana forest[J]. Journal of Northwest Forestry University, 2019, 34(2): 1−7.
    [24]
    罗明, 庞峻峰, 李叙勇, 等. 新疆天山云杉林区森林土壤微生物学特性及酶活性[J]. 生态学杂志, 1997, 16(1):27−31.

    Luo M, Pang J F, Li X Y, et al. Microbial characteristics and enzyme activities of forest soil in the Picea schrenkiana forest region of Xinjiang[J]. Journal of Ecology, 1997, 16(1): 27−31.
    [25]
    轩俊伟, 朱静. 天山云杉立地指数地统计空间分析[J]. 林业资源管理, 2017(3):46−50.

    Xuan J W, Zhu J. Statistical spatial analysis of Picea schrenkiana site index[J]. Forest Resources Management, 2017(3): 46−50.
    [26]
    谢锦, 常顺利, 张毓涛, 等. 天山北坡中段云杉林地表水氮磷含量特征[J]. 山地学报, 2017, 35(6):808−815.

    Xie J, Chang S L, Zhang Y T, et al. Characteristics of surface nitrogen and phosphorus contents in the spruce forest in the middle section of the northern slope of the Tianshan Mountains[J]. Journal of Mountain Research, 2017, 35(6): 808−815.
    [27]
    李吉玫, 张毓涛, 李建贵, 等. 模拟氮沉降对天山云杉细根分解及其养分释放的影响[J]. 西北植物学报, 2015, 35(1):182−188. doi: 10.7606/j.issn.1000-4025.2015.01.0182

    Li J M, Zhang Y T, Li J G, et al. Effects of simulated nitrogen deposition on fine root decomposition and nutrient release of Picea schrenkiana[J]. Northwest Botanical Journal, 2015, 35(1): 182−188. doi: 10.7606/j.issn.1000-4025.2015.01.0182
    [28]
    Biging G S, Dobbertin M. Evaluation of competition indices in individual tree growth models[J]. Forest Science, 1995, 41(2): 360−377.
    [29]
    Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth of loblolly pine trees[J]. Canadian Journal of Forest Research, 1986, 16: 1230−1237. doi: 10.1139/x86-218
    [30]
    Martin G L, Ek A R. A comparison of competition measures and growth models for predicting plantation red pin ediameter and height growth[J]. Forest Science, 1984, 30(3): 731−743.
    [31]
    Lorimer C R. Tests of age-independent competition indices f or individual trees in natural hardwood stands[J]. Forest Ecology and Management, 1983, 6: 343−360. doi: 10.1016/0378-1127(83)90042-7
    [32]
    刘平, 马履一, 王玉涛, 等. 油松中幼人工林单木胸径生长模型研究[J]. 沈阳农业大学学报, 2009, 40(2):197−201. doi: 10.3969/j.issn.1000-1700.2009.02.016

    Liu P, Ma L Y, Wang Y T, et al. Study on the growth model of single diameter DBH in medium and young plantations of Pinus tabulaeformis[J]. Journal of Shenyang Agricultural University, 2009, 40(2): 197−201. doi: 10.3969/j.issn.1000-1700.2009.02.016
    [33]
    闫明准. 帽儿山地区天然次生林单木生长模型的研究[D].哈尔滨: 东北林业大学, 2009.

    Yan M Z. Study on the growth model of natural secondary forest in Maoershan area[D]. Harbin: Northeast Forestry University, 2009.
    [34]
    卢军. 长白山地区天然混交林单木生长模型的研究[D].哈尔滨: 东北林业大学, 2005.

    Lu J. Study on single-wood growth model of natural mixed forest in Changbai Mountain area[D]. Harbin: Northeast Forestry University, 2005.
    [35]
    王文辉, 马祥庆, 田超, 等. 福建长汀植被覆盖度变化的主要驱动影响因子及影响力分析[J]. 福建农林大学学报(自然科学版), 2017, 46(3):277−283.

    Wang W H, Ma X Q, Tian C, et al. Analysis of the main driving influence factors and influence of Changdingzhi’s coverage change in Fujian[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(3): 277−283.
    [36]
    Pinheiro J C, Bates D M. Mixed effects models in S and S-plus[M]. New York: Spring-Verdag, 2000.
    [37]
    李春明. 混合效应模型在森林生长模拟研究中的应用[D]. 北京: 中国林业科学研究院, 2010.

    Li C M. Application of mixed effect model in forest growth simulation research[D]. Beijing: Chinese Academy of Forestry, 2010.
    [38]
    符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1):23−31.

    Fu L Y, Tang S Z, Zhang H R, et al. Single-wood sectional area model of Mongolian forest based on multi-level nonlinear mixed effect[J]. Forestry Science Research, 2015, 28(1): 23−31.
    [39]
    符利勇, 李永慈, 李春明, 等. 利用2种非线性混合效应模型(2水平)对杉木林胸径生长量的分析[J]. 林业科学, 2012, 48(5):36−43. doi: 10.11707/j.1001-7488.20120506

    Fu L Y, Li Y C, Li C M, et al. Analysis of DBH growth of Cunninghamia lanceolata using two kinds of nonlinear mixed effect models (2 levels)[J]. Forestry Science, 2012, 48(5): 36−43. doi: 10.11707/j.1001-7488.20120506
    [40]
    刘青华, 周志春, 张开明, 等. 造林密度对不同马尾松种源生长和木材基本密度的影响[J]. 林业科学, 2010, 46(9):58−64. doi: 10.11707/j.1001-7488.20100910

    Liu Q H, Zhou Z C, Zhang K M, et al. Effects of afforestation density on provenance growth and basic densities of Pinus massoniana[J]. Scientia Silvae Sinica, 2010, 46(9): 58−64. doi: 10.11707/j.1001-7488.20100910
    [41]
    刘新亮, 章挺, 邱凤英, 等. 造林密度对材用樟树幼林生长和蓄积量的影响[J]. 中南林业科技大学学报, 2019, 39(3):23−27, 60.

    Liu X L, Zhang T, Qiu F Y, et al. Effects of afforestation density on the growth and accumulation of young eucalyptus forests[J]. Journal of Central South University of Forestry and Technology, 2019, 39(3): 23−27, 60.
    [42]
    玉宝, 王百田, 红玉, 等. 晋西人工林综合密度效应分析[J]. 西北林学院学报, 2011, 26(4):167−171.

    Yu B, Wang B T, Hong Y, et al. Analysis of the comprehensive density effect of artificial forest in western Shanxi[J]. Journal of Northwest Forestry University, 2011, 26(4): 167−171.
    [43]
    欧建德, 吴志庄. 峦大杉人工林树冠、根系生长和林木分级的早期密度效应[J]. 东北林业大学学报, 2018, 46(12):15−19. doi: 10.3969/j.issn.1000-5382.2018.12.003

    Ou J D, Wu Z Z. Early density effect of canopy, root growth and forest classification of the Chinese fir plantation[J]. Journal of Northeast Forestry University, 2018, 46(12): 15−19. doi: 10.3969/j.issn.1000-5382.2018.12.003
    [44]
    潘文婷, 夏莘, 夏良放, 等. 造林密度对近熟期鹅掌楸生长和材质的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(5):46−52.

    Pan W T, Xia S, Xia L F, et al. Effects of afforestation density on the growth and material of Liriodendron chinense in late maturity[J]. Journal of Nanjing Forestry University (Natural Science), 2018, 42(5): 46−52.
    [45]
    肖锐, 陈东升, 李凤日, 等. 基于两水平混合模型的杂种落叶松胸径和树高生长模拟[J]. 东北林业大学学报, 2015, 43(5):33−37. doi: 10.3969/j.issn.1000-5382.2015.05.007

    Xiao R, Chen D S, Li F R, et al. Simulation of DBH and tree height growth of hybrid larch based on two-level mixed model[J]. Journal of Northeast Forestry University, 2015, 43(5): 33−37. doi: 10.3969/j.issn.1000-5382.2015.05.007
    [46]
    陈莉莉, 袁志友, 穆兴民, 等. 森林细根生产力研究进展[J]. 西北林学院学报, 2015, 30(3):70−75, 80. doi: 10.3969/j.issn.1001-7461.2015.03.13

    Chen L L, Yuan Z Y, Mu X M, et al. Research progress on forest fine root productivity[J]. Journal of Northwest Forestry University, 2015, 30(3): 70−75, 80. doi: 10.3969/j.issn.1001-7461.2015.03.13
    [47]
    罗恒春, 张超. 滇中地区云南松林分胸径生长模型[J]. 东北林业大学学报, 2018, 46(3):1−6. doi: 10.3969/j.issn.1000-5382.2018.03.001

    Luo H C, Zhang C. The model of DBH growth in Yunnan pine forest in central Guizhou[J]. Journal of Northeast Forestry University, 2018, 46(3): 1−6. doi: 10.3969/j.issn.1000-5382.2018.03.001
    [48]
    杨忠岐, 王小艺, 张翌楠, 等. 以生物防治为主的综合控制我国重大林木病虫害研究进展[J]. 中国生物防治学报, 2018, 34(2):163−183.

    Yang Z Q, Wang X Y, Zhang X N, et al. Research progress on the comprehensive control of major forest diseases and insect pests in China based on biological control[J]. Chinese Journal of Biological Control, 2018, 34(2): 163−183.
    [49]
    孔令伟, 陈祥伟, 鲁绍伟, 等. 华北落叶松林木生长、草本植物多样性及地形因子之间的关系[J]. 水土保持通报, 2014, 34(5):60−66.

    Kong L W, Chen X W, Lu S W, et al. The relationship between growth, herbaceous plant diversity and topographic factors of Larix principis-rupprechtii[J]. Journal of Soil and Water Conservation, 2014, 34(5): 60−66.
    [50]
    李琪, 薛雪, 李剑萍, 等. 1981~2006年固原市榆树自然物候对气候变化的响应[J]. 安徽农业科学, 2010, 38(7):3552−3555. doi: 10.3969/j.issn.0517-6611.2010.07.089

    Li Q, Xue X, Li J P, et al. Responses of natural phenology of Eucalyptus in Guyuan City to climate change from 1981 to 2006[J]. Journal of Anhui Agricultural Sciences, 2010, 38(7): 3552−3555. doi: 10.3969/j.issn.0517-6611.2010.07.089
    [51]
    葛道阔, 曹宏鑫, 夏礼如. 苏北农田林网地区气温年际变化趋势及其对杨树生长的影响[J]. 江苏农业科学, 2008(6):283−284, 302. doi: 10.3969/j.issn.1002-1302.2008.06.126

    Ge D K, Cao H X, Xia L R. The interannual variation trend of temperature in farmland forest network in northern Jiangsu and its influence on poplar growth[J]. Jiangsu Agricultural Sciences, 2008(6): 283−284, 302. doi: 10.3969/j.issn.1002-1302.2008.06.126
    [52]
    范志强, 沈海龙, 王庆成, 等. 水曲柳幼林适生立地条件研究[J]. 林业科学, 2002, 38(2):38−43. doi: 10.3321/j.issn:1001-7488.2002.02.008

    Fan Z Q, Shen H L, Wang Q C, et al. Study on the suitable conditions of young ash forests[J]. Scientia Science, 2002, 38(2): 38−43. doi: 10.3321/j.issn:1001-7488.2002.02.008
    [53]
    王涛, 董利虎, 李凤日. 基于混合效应的杂种落叶松人工幼龄林单木枯损模型[J]. 北京林业大学学报, 2018, 40(10):1−12.

    Wang T, Dong L H, Li F R. A single-wood loss model of hybrid larch artificial juvenile forest based on mixed effect[J]. Journal of Beijing Forestry University, 2018, 40(10): 1−12.
    [54]
    韩艳刚, 雷泽勇, 赵国军, 等. 樟子松人工固沙林冠幅:胸径模型[J]. 干旱区研究, 2018, 35(5):1129−1137.

    Han Y G, Lei Z Y, Zhao G J, et al. The crown-sparse model of artificial sand-fixing forest of Pinus sylvestris var. mongolica[J]. Arid Zone Research, 2018, 35(5): 1129−1137.
  • Cited by

    Periodical cited type(2)

    1. 李明清,过双飞,郑凯. 耦合价值与风险评价的矿产资源型城市生态安全格局构建:以马鞍山市为例. 湖南城市学院学报(自然科学版). 2025(01): 43-52 .
    2. 智烈慧,马田田,高原,李晓文,邵冬冬,郭卫华,崔保山. 围垦开发下滨海湿地格局演变的自然-人为复合驱动过程. 生态学报. 2024(21): 9626-9635 .

    Other cited types(0)

Catalog

    Article views (2547) PDF downloads (117) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return