Citation: | Li Xin, Li Shan, Deng Liping, Li Ren, Yin Yafang, Zheng Jingming. Axial variation of characteristics of water conducting tissue in xylem of Catalpa bungei[J]. Journal of Beijing Forestry University, 2020, 42(1): 27-34. DOI: 10.12171/j.1000-1522.20190238 |
[1] |
张红霞, 袁凤辉, 关德新, 等. 维管植物木质部水分传输过程的影响因素及研究进展[J]. 生态学杂志, 2017, 36(11):289−296.
Zhang H X, Yuan F H, Guan D X, et al. A review on water transport in xylem of vascular plants and its affecting factors[J]. Journal of Ecology, 2017, 36(11): 289−296.
|
[2] |
Li S, Lens F, Espino S, et al. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem[J]. IAWA Journal, 2016, 37(2): 152−171. doi: 10.1163/22941932-20160128
|
[3] |
Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47(4): 235−242. doi: 10.2307/1313077
|
[4] |
West G B, Brown J H, Enquist B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400: 664−667.
|
[5] |
Schuldt B, Leuschner C, Brock N, et al. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees[J]. Tree Physiology, 2013, 33(2): 161−174. doi: 10.1093/treephys/tps122
|
[6] |
Tommaso A, Vinicio C, Marco C, et al. Convergent tapering of xylem conduits in different woody species[J]. New Phytologist, 2006, 169(2): 279−290. doi: 10.1111/j.1469-8137.2005.01587.x
|
[7] |
Anfodillo T, Petit G, Crivellaro A. Axial conduit widening in woody species: a still neglected anatomical pattern[J]. IAWA Journal, 2013, 34(4): 352−364. doi: 10.1163/22941932-00000030
|
[8] |
Pfautsch S, Aspinwall M J, Drake J E, et al. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis[J]. Annals of Botany, 2018, 121(1): 129−141. doi: 10.1093/aob/mcx137
|
[9] |
Lechthaler S, Turnbull T L, Gelmini Y, et al. A standardization method to disentangle environmental information from axial trends of xylem anatomical traits[J]. Tree Physiology, 2019, 39(3): 495−502. doi: 10.1093/treephys/tpy110
|
[10] |
Becker P, Gribben R J, Schulte P J. Incorporation of transfer resistance between tracheary elements into hydraulic resistance models for tapered conduits[J]. Tree Physiology, 2003, 23(15): 1009−1019. doi: 10.1093/treephys/23.15.1009
|
[11] |
Petit G, Pfautsch S, Anfodillo T, et al. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance[J]. New Phytologist, 2010, 187(4): 1146−1153. doi: 10.1111/j.1469-8137.2010.03304.x
|
[12] |
Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap[M]. Berlin: Springer, 2002: 45−56.
|
[13] |
李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2015, 39(8):838−848. doi: 10.17521/cjpe.2015.0080
Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants[J]. Journal of Plant Ecology, 2015, 39(8): 838−848. doi: 10.17521/cjpe.2015.0080
|
[14] |
Corothie H. Multilingual glossary of terms used in wood anatomy[M]. Amsterdam: IAWA, 1964: 43.
|
[15] |
England J R, Attiwill P M. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans[J]. Tree Physiology, 2007, 27(8): 1113−1124. doi: 10.1093/treephys/27.8.1113
|
[16] |
Gerrish G. An explanation of natural forest dieback based on the “pipe model” analogy[J]. GeoJournal, 1988, 17(2): 295−299. doi: 10.1007/BF02432939
|
[17] |
Pothier D, Margolis H A, Waring R H. Patterns of change of saturated sapwood permeability and sapwood conductance with stand development[J]. Canadian Journal of Forest Research, 1989, 19(4): 432−439. doi: 10.1139/x89-068
|
[18] |
Coyea M R, Margolis H A. Factors affecting the relationship between sapwood area and leaf area of balsam fir[J]. Canadian Journal of Forest Research, 1992, 22: 1684−1693.
|
[19] |
Fan Z, Cao K, Becker P. Axial and radial variations in xylem anatomy of angiosperm and conifer trees in Yunnan, China[J]. IAWA Journal, 2009, 30(1): 1−13. doi: 10.1163/22941932-90000198
|
[20] |
范泽鑫, 曹坤芳, 邹寿青. 云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化[J]. 植物生态学报, 2005, 29(6):968−975. doi: 10.3321/j.issn:1005-264X.2005.06.013
Fan Z X, Cao K F, Zou S Q. Axial and radial changes in xylem anatomical characteristics in six evergreen broadleaved tree species in Ailao Mountain, Yunnan[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 968−975. doi: 10.3321/j.issn:1005-264X.2005.06.013
|
[21] |
Scholz A, Klepsch M, Karimi Z, et al. How to quantify conduits in wood?[J]. Frontiers in Plant Science, 2013, 4: 1−11.
|
[22] |
Sperry J S, Nichols K L, Sullivan J E M, et al. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska[J]. Ecology, 1994, 75: 1736−1752. doi: 10.2307/1939633
|
[23] |
Petit G, Anfodillo T, Mencuccini M. Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees[J]. New Phytologist, 2008, 177(3): 653−664. doi: 10.1111/j.1469-8137.2007.02291.x
|
[24] |
Petit G, Anfodillo T, Carraro V, et al. Hydraulic constraints limit height growth in trees at high altitude[J]. New Phytologist, 2011, 189(1): 241−252. doi: 10.1111/j.1469-8137.2010.03455.x
|
[25] |
Petit G, Declerck F A J, Carrer M, et al. Axial vessel widening in arborescent monocots[J]. Tree Physiology, 2014, 34(2): 137−145. doi: 10.1093/treephys/tpt118
|
[26] |
Petit G, Anfodillo T. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants[J]. Journal of Theoretical Biology, 2009, 259(1): 1−4. doi: 10.1016/j.jtbi.2009.03.007
|
[27] |
Lintunen A, Kalliokoski T. The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris[J]. Tree Physiology, 2010, 30(11): 1433−1447. doi: 10.1093/treephys/tpq085
|
[28] |
Bettiati D, Petit G, Anfodillo T. Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses[J]. Tree Physiology, 2012, 32(2): 171−177. doi: 10.1093/treephys/tpr137
|
[29] |
Olson M E, Soriano D, Rosell J A, et al. Plant height and hydraulic vulnerability to drought and cold[J]. Proceedings of the National Academy of Sciences, 2018, 115(29): 7551−7556. doi: 10.1073/pnas.1721728115
|
[30] |
Cardoso S, Sousa V B, Quilhó T, et al. Anatomical variation of teakwood from unmanaged mature plantations in East Timor[J]. Journal of Wood Science, 2015, 61(3): 326−333. doi: 10.1007/s10086-015-1474-y
|
[31] |
龚容, 徐霞江, 红蕾, 等. 干旱半干旱区几种典型灌木半灌木茎叶水分传导系统的结构特征[J]. 北京师范大学学报(自然科学版), 2018, 54(4):104−112.
Gong R, Xu X J, Hong L, et al. Architectural traits of stem-leaf hydraulic system in typical shrubs in arid and semi-arid regions[J]. Journal of Beijing Normal University (Natural Science), 2018, 54(4): 104−112.
|
[32] |
Zanne A E, Westoby M, Falster D S, et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity[J]. American Journal of Botany, 2010, 97(2): 207−215. doi: 10.3732/ajb.0900178
|
[33] |
Fan D Y, Xie Z Q. Several controversial viewpoints in studying the cavitation of xylem vessels[J]. Acta Phytoecologica Sinica, 2004, 28(1): 126−132.
|
[34] |
Schulte P J, Gibson A C. Hydraulic conductance and tracheid anatomy in six species of extant seed plants[J]. Canadian Journal of Botany, 1988, 66(6): 1073−1079. doi: 10.1139/b88-153
|
[35] |
Aparecido L M T, Santos J D, Higuchi N, et al. Relevance of wood anatomy and size of Amazonian trees in the determination and allometry of sapwood area[J]. Acta Amazonica, 2019, 49(1): 1−10. doi: 10.1590/1809-4392201800961
|
[36] |
Köstner B, Falge E, Tenhunen J D. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany[J]. Tree Physiology, 2002, 22(8): 567−574. doi: 10.1093/treephys/22.8.567
|
[37] |
Gebauer T, Horna V, Leuschner C. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species[J]. Tree Physiology, 2008, 28(12): 1821−1830. doi: 10.1093/treephys/28.12.1821
|
[38] |
Meinzer F C, Bond B J, Warren J M, et al. Does water transport scale universally with tree size?[J]. Functional Ecology, 2005, 19(4): 558−565. doi: 10.1111/j.1365-2435.2005.01017.x
|
[39] |
Bass P, Ewers F W, Davis S D, et al. Evolution of xylem physiology[M]// Hemsle A R, Poole I. The evolution of plant physiology. New York: Academic Press, 2004.
|
[40] |
Jean-Christophe D, Barbara L, Meinzer F C. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii, Pinaceae) trees[J]. American Journal of Botany, 2006, 93(11): 1588−1600. doi: 10.3732/ajb.93.11.1588
|
[41] |
Cochard H, Holtta T, Herbette S, et al. New insights into the mechanisms of water-stress-induced cavitation in conifers[J]. Plant Physiology, 2009, 151(2): 949−954. doi: 10.1104/pp.109.138305
|
[42] |
Delzon S, Douthe C, Sala A, et al. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding[J]. Plant, Cell & Environment, 2010, 33(12): 2101−2111.
|
[43] |
木巴热克·阿尤普, 荆卫民, 伊丽米努尔, 等. 柽柳属6种植物侧枝木质部导水率与纹孔数量特征关系[J]. 西北林学院学报, 2017, 32(2):106−111. doi: 10.3969/j.issn.1001-7461.2017.02.18
Mubarek A, Jing W M, Yiliminuer, et al. Relations between xylem hydraulic efficiency and inter-vessel pit features of six Tamarix L. species[J]. Journal of Northwest Forestry University, 2017, 32(2): 106−111. doi: 10.3969/j.issn.1001-7461.2017.02.18
|
[44] |
Wheeler J K, Sperry J S, Hacke U G, et al. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport[J]. Plant, Cell & Environment, 2005, 28(6): 800−812.
|
[45] |
Christman M A, Sperry J S, Adler F R. Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer[J]. New Phytologist, 2009, 182(3): 664−674. doi: 10.1111/j.1469-8137.2009.02776.x
|
1. |
杨博文,刘凤莲,陈洪敏. 三江并流区森林植被时空演变及驱动因素. 森林工程. 2025(01): 108-125 .
![]() |