• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Sun Yibo, Liu Qiang, Li Fengri. Dynamic simulation of light distribution in the live crown of Larix olgensis trees[J]. Journal of Beijing Forestry University, 2019, 41(12): 77-87. DOI: 10.12171/j.1000-1522.20190324
Citation: Sun Yibo, Liu Qiang, Li Fengri. Dynamic simulation of light distribution in the live crown of Larix olgensis trees[J]. Journal of Beijing Forestry University, 2019, 41(12): 77-87. DOI: 10.12171/j.1000-1522.20190324

Dynamic simulation of light distribution in the live crown of Larix olgensis trees

More Information
  • Received Date: August 29, 2019
  • Revised Date: September 17, 2019
  • Available Online: December 16, 2019
  • Published Date: November 30, 2019
  • ObjectiveExtinction coefficient (k) is an important indicator to simulate the light transmission in the crown. By comparing the different methods to obtain k, this paper aims to select the optimal method to estimate the dynamical PAR in the crown of Larix olgensis trees.
    Method (1) The PAR data was divided into fitting data and validation data with a ratio of 3:1 and the k predicting model was developed; (2) artificially setting k with different gradients and using fitting data to estimate crown PAR then selecting the optimal k value; (3) Based on the average leaf inclination data, we calculated k with the average leaf inclination formula. The test data was used as an independent sample to conduct an independent test on the PAR estimated by the above three methods. By comparing the above three method’s estimation effect on PAR in the crown, we selected the optimal k to estimate dynamical PAR with meteorological data.
    ResultAccording to the measured PAR data, there was a big difference in the crown’s rotation pseudowhorls k, which ranged from 0.1 to 1.5, and showed an obvious exponential or power function relationship with RDINC. Meanwhile, solar altitude angle (Sa), max cumulative leaf area (MCLA), needle area density (NAD), and crown surface area (CS) also had significant effects on k vertical variation. Therefore, considering the exponential function as basic model, the k predicting model was established with RDINC, Sa, MCLA, NAD, and CS as independent variables, and the fitting result indicated that the k model performed well (R2 = 0.736, RMSE = 0.124). PAR was best estimated when k was 0.32. The difference of k values in each pseudowhorl calculated by the average leaf inclination distribution formula was not obvious, which ranged from 0.3 to 0.7. The perform of the above three methods on PAR estimation was tested and the results showed that the Method I performed the best (mean error ME = 2.88, mean absolute error: MAE = 117.4, precision estimation: P = 91.53%), Method II was better (ME = 2.88, MAE = 217.5, P = 88.12%), Method III was the worst (Method III-1 ME = 121.4, MAE = 210.1, P = 55.85%; Method III-2 ME = 226.4, MAE = 259.0, P = 42.93%).
    Conclusionk was not a constant value in the case of different trees, different pseudowhorls and different Sa. In this study, the k model was established which fully took Sa, CLA and RDINC into account. The PAR for Larix olgensis trees was well estimated based on the k model. The results will provide a scientific basis for simulating the net photosynthetic rate of live crown with different position for planted Larix olgensis trees.
  • [1]
    陈东升. 樟子松人工林节子分布和大小预测模型[D]. 哈尔滨: 东北林业大学, 2007.

    Chen D S. Prediction model for the distribution and size of the knot in Mongolian Scots plantation[D]. Harbin: Northeast Forestry University, 2007.
    [2]
    孙守强. 樟子松人工林节子大小的预测与整枝技术的研究[D]. 哈尔滨: 东北林业大学, 2015.

    Sun S Q. Prediction of node size and study of pruning technique in Mongolian Scots plantation[D]. Harbin: Northeast Forestry University, 2015
    [3]
    Larson O. Touching the stones: tracing one hundred years of Japanese American history by Mark Sherman; George Katagiri[J]. Oregon Historical Quarterly, 1996(1): 100−101.
    [4]
    李凤日, 王治富, 王保森. 落叶松人工林有效冠动态研究(Ⅰ): 有效冠的确定[J]. 东北林业大学学报, 1996, 24(1):1−8.

    Li F R, Wang Z F, Wang B S. Larix olgensis plantation effective crown research in motion (Ⅰ): determination of effective crown[J]. Journal of Northeast Forestry University, 1996, 24(1): 1−8.
    [5]
    Mccree K J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data[J]. Agric For Meteorol, 1972, 10: 443−453. doi: 10.1016/0002-1571(72)90045-3
    [6]
    Hu B, Wang Y. Comparison of multi-empirical estimation models of photosynthetically active radiation under all sky conditions in Northeast China[J]. Theoretical & Applied Climatology, 2014, 116(1−2): 119−129.
    [7]
    Asaf D, Rotenberg E, Tatarinov F, et al. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux[J]. Nat Geosci, 2013, 6: 186−190. doi: 10.1038/ngeo1730
    [8]
    Gray L J, Beer J, Geller M, et al. Solar influence on climate[J]. Reviews of Geophysics, 2010, 48(4): 1032−1047.
    [9]
    Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329: 834−838. doi: 10.1126/science.1184984
    [10]
    Kanniah K D, Beringer J, Hutley L. Exploring the link between clouds, radiation, and crown productivity of tropical savannas[J]. Agric For Meteorol, 2013, 182: 304−313.
    [11]
    Wang Y P, Jarvis P G. Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO)[J]. Tree Physiology, 1990, 7: 297−316. doi: 10.1093/treephys/7.1-2-3-4.297
    [12]
    纪和. 马尾松冠层光合有效辐射三维空间分布模型的构建与验证[D]. 武汉: 华中农业大学, 2011.

    Ji H. The modelling of three dimensional distribution of photosynthetically active radtion in Pinus massoniana crown [D]. Wuhan: Huazhong Agricultural University, 2011.
    [13]
    王占刚, 庄大方, 明涛. 林木冠层光合有效辐射分布模拟的研究[J]. 地球信息科学学报, 2008, 10(6):697−702. doi: 10.3969/j.issn.1560-8999.2008.06.004

    Wang Z G, Zhuang D F, Ming T. Simulation of photosynthetic effective radiation distribution in forest crown[J]. Geo-Information Science, 2008, 10(6): 697−702. doi: 10.3969/j.issn.1560-8999.2008.06.004
    [14]
    刘晓东, 朱春全, 雷静品. 杨树人工林冠层光合辐射分布的研究[J]. 林业科学, 2000, 36(3):2−7. doi: 10.3321/j.issn:1001-7488.2000.03.001

    Liu X D, Zhu C Q, Lei J P. Τhe distribution of photosynthetic radiation in the crown of Populus L. plantation[J]. Scientia Silvae Sinicae, 2000, 36(3): 2−7. doi: 10.3321/j.issn:1001-7488.2000.03.001
    [15]
    钟泳林, 王志云, 冼丽铧. 基于粗糙集的林木冠层结构和光分布对净光合速率影响研究[J]. 中南林业科技大学学报, 2014(4):43−49. doi: 10.3969/j.issn.1673-923X.2014.04.009

    Zhong Y L, Wang Z Y, Xian L H. Effects of crown structure and solar radiation distribution on net photosynthetic rate based on rough set theory[J]. Journal of Central South University of Forestry & Technology, 2014(4): 43−49. doi: 10.3969/j.issn.1673-923X.2014.04.009
    [16]
    刘志刚,马钦彦, 潘向丽. 华北落叶松不同类型林木的冠结构与光的分布[J]. 河北林果研究, 1997(2):99−107.

    Liu Z G,Ma Q Y, Pan X L. crown structure and light distribution of different types of Larix principis-rupprechtii Mayr[J]. Hebei Journal of Forestry and Orchard Research, 1997(2): 99−107.
    [17]
    马钦彦, 刘志刚, 潘向丽, 等. 华北落叶松人工林生长季内的林冠结构和光分布[J]. 北京林业大学学报, 2000, 22(4):18−21. doi: 10.3321/j.issn:1000-1522.2000.04.004

    Ma Q Y, Liu Z G, Pan X L, et al. crown structure and light distribution inLarix principis-rupprechtii Mayr plantation growing season[J]. Journal of Beijing Forestry University, 2000, 22(4): 18−21. doi: 10.3321/j.issn:1000-1522.2000.04.004
    [18]
    Nilson T. A theoretical analysis of the frequency of gaps in plant stands[J]. Agricultural Meteorology, 1971, 8: 25−38. doi: 10.1016/0002-1571(71)90092-6
    [19]
    Monsi M. On the factor light in plant communities and its importance for matter production[J]. Annals of Botany, 2004, 95(3): 549−567. doi: 10.1093/aob/mci052
    [20]
    Chen J M, Leblanc S G. A four-scale bidirectional reflectance model based on crown architecture[J]. Geoscience & Remote Sensing IEEE Transactions on, 1997, 35(5): 1316−1337.
    [21]
    高丽群. 测定叶面积指数的贝尔定律的适用性分析[D]. 哈尔滨: 东北林业大学, 2016.

    Gao L Q. The applicability analysis of determination of leaf area index of Bell Law[D]. Harbin: Northeast Forestry University, 2016.
    [22]
    Campbell G S. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions[J]. Agricultural & Forest Meteorology, 1990, 49(3): 173−176.
    [23]
    Zhang J, Wang Y, Zhao Y, et al. Dynamic simulation of leaf inclination angle distribution based on ellipsoidal function[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4): 157−160, 183.
    [24]
    Li Y M, Wang R C, Wang X Z, et al. Simulating rice leaf angle inclination distribution by elliptical distribution function[J]. Journal of Biomathematics, 2003, 18(1): 105−108.
    [25]
    王绪鹏, 范文义, 温一博. 基于Campbell椭球分布函数的大兴安岭地区主要树种叶倾角分布模拟[J]. 应用生态学报, 2013, 24(11):3199−3206.

    Wang X P, Fan W Y, Wen Y B. Simulation of leaf inclination angle distribution of main tree species in Daxing’an Mountains of China based on the Campbell ellipsoid distribution function[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3199−3206.
    [26]
    Landsberg J J, Waring R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and PAR titioning[J]. Forest Ecology & Management, 1997, 95(3): 209−228.
    [27]
    赵梅芳. 基于3-PG机理模型的杉木林碳固定及蒸散量模拟研究[D]. 长沙: 中南林业科技大学, 2008.

    Zhao M F. Simulating Chinese fir plantation carbon storage and evapotranspirtion using the 3-PG model[D]. Changsha: Central South University of Forestry and Technology, 2008.
    [28]
    Yan X, Shugart H. FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests[J]. Journal of Biogeography, 2010, 32(9): 1641−1658.
    [29]
    Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 2003, 9(2): 161−185. doi: 10.1046/j.1365-2486.2003.00569.x
    [30]
    Falster D S, Åke Brännström, Dieckmann U, et al. Influence of four major plant traits on average height, leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoretical investigation[J]. Journal of Ecology, 2011, 99(1): 148−164. doi: 10.1111/j.1365-2745.2010.01735.x
    [31]
    Pierce L L, Running S W. Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer[J]. Ecology, 1988, 69: 1762−1767. doi: 10.2307/1941154
    [32]
    Kohler P, Huth A. The effects of tree species grouping in tropical rainforest modelling: simulations with the individual-based model Formind[J]. Ecological Modelling, 1998, 109(3): 301−321. doi: 10.1016/S0304-3800(98)00066-0
    [33]
    Cluzeau C, Goff N L, Ottorini J M. Development of primary branches and crown profile of Fraxinus excelsior[J]. Canadian Journal of Forest Research, 1994, 24(12): 2315−2323. doi: 10.1139/x94-299
    [34]
    刘强, 董利虎, 李凤日. 长白落叶松冠层光合作用的空间异质性[J]. 应用生态学报, 2016, 27(9):2789−2796.

    Liu Q, Dong L H, Li F R. Spatial heterogeneity of crown photosynthesis for Larix olgensis[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2789−2796.
    [35]
    Liu Z, Jin G Z, Qi Y J. Estimate of leaf area index in an old-growth mixed broadleaved-korean pine forest in Northeastern China[J/OL]. Plos One, 2012, 7(3): e32155 (2012−03−09) [2018−12−05]. https://doi.org/10.1371/journal.pone.0032155.
    [36]
    Liu Z, Chen J M, Jin G, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agricultural and Forest Meteorology, 2015, 209−210: 36−48. doi: 10.1016/j.agrformet.2015.04.025
    [37]
    Xiao C W, Janssens I A, Yuste J C, et al. Variation of specific leaf area and upscaling to leaf area index in mature Scots pine[J]. Trees, 2006, 20(3): 304−310. doi: 10.1007/s00468-005-0039-x
    [38]
    Fellner H, Dirnberger G F, Sterba H. Specific leaf area of european larch (Larix decidua Mill.) trees[J]. Agricultural and Forest Meteorology, 2016, 30(4): 1237−1244.
    [39]
    谈小生, 葛成辉. 太阳角的计算方法及其在遥感中的应用[J]. 国土资源遥感, 1995(2):48−57. doi: 10.6046/gtzyyg.1995.02.07

    Tan X S, Ge C H. Calculation method of solar angle and its application in remote sensing[J]. Remote Sensing for Land & Resources, 1995(2): 48−57. doi: 10.6046/gtzyyg.1995.02.07
    [40]
    Zhang X Q, Xu D Y. Light responses of 18-year-old China fir shoots in relation to shoot ages in positions within crown[J]. Acta Ecologica Sinica, 2001, 21(3): 409−414.
    [41]
    Campbell G S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution[J]. Agricultural and Forest Meteorology, 1986, 36(4): 317−321. doi: 10.1016/0168-1923(86)90010-9
    [42]
    Wang Y P, Jarvis P G. Mean leaf angles for the ellipsoidal inclination angle distribution[J]. Agricultural & Forest Meteorology, 1988, 43(3): 319−321.
  • Cited by

    Periodical cited type(13)

    1. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 .
    2. 张勰,伍汉斌,程勇,张春艳,王欣,蒋宏春,张森强,段爱国. 杉木育种群体遗传多样性评价及核心种质构建. 中南林业科技大学学报. 2024(09): 118-126 .
    3. 胡勐鸿,李万峰,吕寻,戴小芬,李宗德,周卓玲. 日本落叶松种子园和人工林优树自由授粉家系苗期选择. 森林工程. 2024(06): 64-78 .
    4. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    5. 胡勐鸿,吕寻,李万峰,戴小芬. 日本落叶松种子园和人工林优树自由授粉家系试验林比较. 温带林业研究. 2023(02): 8-16 .
    6. 康向阳. 论林木常规育种与非常规育种及其关系. 北京林业大学学报. 2023(06): 1-7 . 本站查看
    7. 赵阳,冯延芝,杨超伟,王保平,乔杰,殷世雨,周海江,李芳东. 基于全基因组重测序的泡桐属植物遗传关系分析. 中南林业科技大学学报. 2023(06): 1-10 .
    8. 李江,陈伟,陈少瑜,罗婷,冯弦,陈绍安,姜远标. 思茅松高世代育种策略研究. 西部林业科学. 2023(04): 1-6+19 .
    9. 邱妍,翁启杰,李梅,陈升侃,周长品,李发根,甘四明. 尾叶桉×细叶桉多年生生长及其与材性相关的遗传分析. 林业科学研究. 2022(04): 1-8 .
    10. 汪淑娟. 林木育种技术在绿化苗木培育中的应用. 南方农业. 2021(05): 89-90 .
    11. 杜超群,孙晓梅,谢允慧,侯义梅. 北亚热带日本落叶松不同改良水平群体的遗传多样性. 林业科学. 2021(05): 68-76 .
    12. 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版). 2020(03): 1-10 .
    13. 边黎明,陈松,史月冬,叶代全,施季森. 湖南排牙山杉木优树子代测定长期试验的遗传分析. 中南林业科技大学学报. 2020(12): 1-8 .

    Other cited types(3)

Catalog

    Article views (1855) PDF downloads (123) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return