• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Sun Yibo, Liu Qiang, Li Fengri. Dynamic simulation of light distribution in the live crown of Larix olgensis trees[J]. Journal of Beijing Forestry University, 2019, 41(12): 77-87. DOI: 10.12171/j.1000-1522.20190324
Citation: Sun Yibo, Liu Qiang, Li Fengri. Dynamic simulation of light distribution in the live crown of Larix olgensis trees[J]. Journal of Beijing Forestry University, 2019, 41(12): 77-87. DOI: 10.12171/j.1000-1522.20190324

Dynamic simulation of light distribution in the live crown of Larix olgensis trees

More Information
  • Received Date: August 29, 2019
  • Revised Date: September 17, 2019
  • Available Online: December 16, 2019
  • Published Date: November 30, 2019
  • ObjectiveExtinction coefficient (k) is an important indicator to simulate the light transmission in the crown. By comparing the different methods to obtain k, this paper aims to select the optimal method to estimate the dynamical PAR in the crown of Larix olgensis trees.
    Method (1) The PAR data was divided into fitting data and validation data with a ratio of 3:1 and the k predicting model was developed; (2) artificially setting k with different gradients and using fitting data to estimate crown PAR then selecting the optimal k value; (3) Based on the average leaf inclination data, we calculated k with the average leaf inclination formula. The test data was used as an independent sample to conduct an independent test on the PAR estimated by the above three methods. By comparing the above three method’s estimation effect on PAR in the crown, we selected the optimal k to estimate dynamical PAR with meteorological data.
    ResultAccording to the measured PAR data, there was a big difference in the crown’s rotation pseudowhorls k, which ranged from 0.1 to 1.5, and showed an obvious exponential or power function relationship with RDINC. Meanwhile, solar altitude angle (Sa), max cumulative leaf area (MCLA), needle area density (NAD), and crown surface area (CS) also had significant effects on k vertical variation. Therefore, considering the exponential function as basic model, the k predicting model was established with RDINC, Sa, MCLA, NAD, and CS as independent variables, and the fitting result indicated that the k model performed well (R2 = 0.736, RMSE = 0.124). PAR was best estimated when k was 0.32. The difference of k values in each pseudowhorl calculated by the average leaf inclination distribution formula was not obvious, which ranged from 0.3 to 0.7. The perform of the above three methods on PAR estimation was tested and the results showed that the Method I performed the best (mean error ME = 2.88, mean absolute error: MAE = 117.4, precision estimation: P = 91.53%), Method II was better (ME = 2.88, MAE = 217.5, P = 88.12%), Method III was the worst (Method III-1 ME = 121.4, MAE = 210.1, P = 55.85%; Method III-2 ME = 226.4, MAE = 259.0, P = 42.93%).
    Conclusionk was not a constant value in the case of different trees, different pseudowhorls and different Sa. In this study, the k model was established which fully took Sa, CLA and RDINC into account. The PAR for Larix olgensis trees was well estimated based on the k model. The results will provide a scientific basis for simulating the net photosynthetic rate of live crown with different position for planted Larix olgensis trees.
  • [1]
    陈东升. 樟子松人工林节子分布和大小预测模型[D]. 哈尔滨: 东北林业大学, 2007.

    Chen D S. Prediction model for the distribution and size of the knot in Mongolian Scots plantation[D]. Harbin: Northeast Forestry University, 2007.
    [2]
    孙守强. 樟子松人工林节子大小的预测与整枝技术的研究[D]. 哈尔滨: 东北林业大学, 2015.

    Sun S Q. Prediction of node size and study of pruning technique in Mongolian Scots plantation[D]. Harbin: Northeast Forestry University, 2015
    [3]
    Larson O. Touching the stones: tracing one hundred years of Japanese American history by Mark Sherman; George Katagiri[J]. Oregon Historical Quarterly, 1996(1): 100−101.
    [4]
    李凤日, 王治富, 王保森. 落叶松人工林有效冠动态研究(Ⅰ): 有效冠的确定[J]. 东北林业大学学报, 1996, 24(1):1−8.

    Li F R, Wang Z F, Wang B S. Larix olgensis plantation effective crown research in motion (Ⅰ): determination of effective crown[J]. Journal of Northeast Forestry University, 1996, 24(1): 1−8.
    [5]
    Mccree K J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data[J]. Agric For Meteorol, 1972, 10: 443−453. doi: 10.1016/0002-1571(72)90045-3
    [6]
    Hu B, Wang Y. Comparison of multi-empirical estimation models of photosynthetically active radiation under all sky conditions in Northeast China[J]. Theoretical & Applied Climatology, 2014, 116(1−2): 119−129.
    [7]
    Asaf D, Rotenberg E, Tatarinov F, et al. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux[J]. Nat Geosci, 2013, 6: 186−190. doi: 10.1038/ngeo1730
    [8]
    Gray L J, Beer J, Geller M, et al. Solar influence on climate[J]. Reviews of Geophysics, 2010, 48(4): 1032−1047.
    [9]
    Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329: 834−838. doi: 10.1126/science.1184984
    [10]
    Kanniah K D, Beringer J, Hutley L. Exploring the link between clouds, radiation, and crown productivity of tropical savannas[J]. Agric For Meteorol, 2013, 182: 304−313.
    [11]
    Wang Y P, Jarvis P G. Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO)[J]. Tree Physiology, 1990, 7: 297−316. doi: 10.1093/treephys/7.1-2-3-4.297
    [12]
    纪和. 马尾松冠层光合有效辐射三维空间分布模型的构建与验证[D]. 武汉: 华中农业大学, 2011.

    Ji H. The modelling of three dimensional distribution of photosynthetically active radtion in Pinus massoniana crown [D]. Wuhan: Huazhong Agricultural University, 2011.
    [13]
    王占刚, 庄大方, 明涛. 林木冠层光合有效辐射分布模拟的研究[J]. 地球信息科学学报, 2008, 10(6):697−702. doi: 10.3969/j.issn.1560-8999.2008.06.004

    Wang Z G, Zhuang D F, Ming T. Simulation of photosynthetic effective radiation distribution in forest crown[J]. Geo-Information Science, 2008, 10(6): 697−702. doi: 10.3969/j.issn.1560-8999.2008.06.004
    [14]
    刘晓东, 朱春全, 雷静品. 杨树人工林冠层光合辐射分布的研究[J]. 林业科学, 2000, 36(3):2−7. doi: 10.3321/j.issn:1001-7488.2000.03.001

    Liu X D, Zhu C Q, Lei J P. Τhe distribution of photosynthetic radiation in the crown of Populus L. plantation[J]. Scientia Silvae Sinicae, 2000, 36(3): 2−7. doi: 10.3321/j.issn:1001-7488.2000.03.001
    [15]
    钟泳林, 王志云, 冼丽铧. 基于粗糙集的林木冠层结构和光分布对净光合速率影响研究[J]. 中南林业科技大学学报, 2014(4):43−49. doi: 10.3969/j.issn.1673-923X.2014.04.009

    Zhong Y L, Wang Z Y, Xian L H. Effects of crown structure and solar radiation distribution on net photosynthetic rate based on rough set theory[J]. Journal of Central South University of Forestry & Technology, 2014(4): 43−49. doi: 10.3969/j.issn.1673-923X.2014.04.009
    [16]
    刘志刚,马钦彦, 潘向丽. 华北落叶松不同类型林木的冠结构与光的分布[J]. 河北林果研究, 1997(2):99−107.

    Liu Z G,Ma Q Y, Pan X L. crown structure and light distribution of different types of Larix principis-rupprechtii Mayr[J]. Hebei Journal of Forestry and Orchard Research, 1997(2): 99−107.
    [17]
    马钦彦, 刘志刚, 潘向丽, 等. 华北落叶松人工林生长季内的林冠结构和光分布[J]. 北京林业大学学报, 2000, 22(4):18−21. doi: 10.3321/j.issn:1000-1522.2000.04.004

    Ma Q Y, Liu Z G, Pan X L, et al. crown structure and light distribution inLarix principis-rupprechtii Mayr plantation growing season[J]. Journal of Beijing Forestry University, 2000, 22(4): 18−21. doi: 10.3321/j.issn:1000-1522.2000.04.004
    [18]
    Nilson T. A theoretical analysis of the frequency of gaps in plant stands[J]. Agricultural Meteorology, 1971, 8: 25−38. doi: 10.1016/0002-1571(71)90092-6
    [19]
    Monsi M. On the factor light in plant communities and its importance for matter production[J]. Annals of Botany, 2004, 95(3): 549−567. doi: 10.1093/aob/mci052
    [20]
    Chen J M, Leblanc S G. A four-scale bidirectional reflectance model based on crown architecture[J]. Geoscience & Remote Sensing IEEE Transactions on, 1997, 35(5): 1316−1337.
    [21]
    高丽群. 测定叶面积指数的贝尔定律的适用性分析[D]. 哈尔滨: 东北林业大学, 2016.

    Gao L Q. The applicability analysis of determination of leaf area index of Bell Law[D]. Harbin: Northeast Forestry University, 2016.
    [22]
    Campbell G S. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions[J]. Agricultural & Forest Meteorology, 1990, 49(3): 173−176.
    [23]
    Zhang J, Wang Y, Zhao Y, et al. Dynamic simulation of leaf inclination angle distribution based on ellipsoidal function[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4): 157−160, 183.
    [24]
    Li Y M, Wang R C, Wang X Z, et al. Simulating rice leaf angle inclination distribution by elliptical distribution function[J]. Journal of Biomathematics, 2003, 18(1): 105−108.
    [25]
    王绪鹏, 范文义, 温一博. 基于Campbell椭球分布函数的大兴安岭地区主要树种叶倾角分布模拟[J]. 应用生态学报, 2013, 24(11):3199−3206.

    Wang X P, Fan W Y, Wen Y B. Simulation of leaf inclination angle distribution of main tree species in Daxing’an Mountains of China based on the Campbell ellipsoid distribution function[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3199−3206.
    [26]
    Landsberg J J, Waring R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and PAR titioning[J]. Forest Ecology & Management, 1997, 95(3): 209−228.
    [27]
    赵梅芳. 基于3-PG机理模型的杉木林碳固定及蒸散量模拟研究[D]. 长沙: 中南林业科技大学, 2008.

    Zhao M F. Simulating Chinese fir plantation carbon storage and evapotranspirtion using the 3-PG model[D]. Changsha: Central South University of Forestry and Technology, 2008.
    [28]
    Yan X, Shugart H. FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests[J]. Journal of Biogeography, 2010, 32(9): 1641−1658.
    [29]
    Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 2003, 9(2): 161−185. doi: 10.1046/j.1365-2486.2003.00569.x
    [30]
    Falster D S, Åke Brännström, Dieckmann U, et al. Influence of four major plant traits on average height, leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoretical investigation[J]. Journal of Ecology, 2011, 99(1): 148−164. doi: 10.1111/j.1365-2745.2010.01735.x
    [31]
    Pierce L L, Running S W. Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer[J]. Ecology, 1988, 69: 1762−1767. doi: 10.2307/1941154
    [32]
    Kohler P, Huth A. The effects of tree species grouping in tropical rainforest modelling: simulations with the individual-based model Formind[J]. Ecological Modelling, 1998, 109(3): 301−321. doi: 10.1016/S0304-3800(98)00066-0
    [33]
    Cluzeau C, Goff N L, Ottorini J M. Development of primary branches and crown profile of Fraxinus excelsior[J]. Canadian Journal of Forest Research, 1994, 24(12): 2315−2323. doi: 10.1139/x94-299
    [34]
    刘强, 董利虎, 李凤日. 长白落叶松冠层光合作用的空间异质性[J]. 应用生态学报, 2016, 27(9):2789−2796.

    Liu Q, Dong L H, Li F R. Spatial heterogeneity of crown photosynthesis for Larix olgensis[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2789−2796.
    [35]
    Liu Z, Jin G Z, Qi Y J. Estimate of leaf area index in an old-growth mixed broadleaved-korean pine forest in Northeastern China[J/OL]. Plos One, 2012, 7(3): e32155 (2012−03−09) [2018−12−05]. https://doi.org/10.1371/journal.pone.0032155.
    [36]
    Liu Z, Chen J M, Jin G, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agricultural and Forest Meteorology, 2015, 209−210: 36−48. doi: 10.1016/j.agrformet.2015.04.025
    [37]
    Xiao C W, Janssens I A, Yuste J C, et al. Variation of specific leaf area and upscaling to leaf area index in mature Scots pine[J]. Trees, 2006, 20(3): 304−310. doi: 10.1007/s00468-005-0039-x
    [38]
    Fellner H, Dirnberger G F, Sterba H. Specific leaf area of european larch (Larix decidua Mill.) trees[J]. Agricultural and Forest Meteorology, 2016, 30(4): 1237−1244.
    [39]
    谈小生, 葛成辉. 太阳角的计算方法及其在遥感中的应用[J]. 国土资源遥感, 1995(2):48−57. doi: 10.6046/gtzyyg.1995.02.07

    Tan X S, Ge C H. Calculation method of solar angle and its application in remote sensing[J]. Remote Sensing for Land & Resources, 1995(2): 48−57. doi: 10.6046/gtzyyg.1995.02.07
    [40]
    Zhang X Q, Xu D Y. Light responses of 18-year-old China fir shoots in relation to shoot ages in positions within crown[J]. Acta Ecologica Sinica, 2001, 21(3): 409−414.
    [41]
    Campbell G S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution[J]. Agricultural and Forest Meteorology, 1986, 36(4): 317−321. doi: 10.1016/0168-1923(86)90010-9
    [42]
    Wang Y P, Jarvis P G. Mean leaf angles for the ellipsoidal inclination angle distribution[J]. Agricultural & Forest Meteorology, 1988, 43(3): 319−321.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1859) PDF downloads (124) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return