Citation: | Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410 |
[1] |
Borrega M, Gibson L J. Mechanics of balsa (Ochroma pyramidale) wood[J]. Mechanics of Materials, 2015, 84: 75−90.
|
[2] |
Song J, Chen C, Yang Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano, 2018, 12(1): 140−147.
|
[3] |
Garemark J, Yang X, Sheng X, et al. Top-down approach making anisotropic cellulose aerogels as universal substrates for multi-functionalization[J]. ACS Nano, 2020, 14(6): 7111−7120.
|
[4] |
Wu M B, Huang S, Liu C, et al. Carboxylated wood-based sponges with underoil superhydrophilicity for deep dehydration of crude oil[J]. Journal of Materials Chemistry A, 2020(22): 11354−11361.
|
[5] |
Yang R, Cao Q, Liang Y, et al. High capacity oil absorbent wood prepared through eco-friendly deep eutectic solvent delignification[J]. Chemical Engineering Journal, 2020, 401: 126150.
|
[6] |
Atalla R H, Hackney J M, Uhlin I, et al. Hemicelluloses as structure regulators in the aggregation of native cellulose[J]. International Journal of Biological Macromolecules, 1993, 15(2): 109−112.
|
[7] |
Busse-Wicher M, Gomes T C F, Tryfona T, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana[J]. The Plant Journal, 2014, 79(3): 492−506.
|
[8] |
Grantham N J, Wurman-Rodrich J, Terrett O M, et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls[J]. Nature Plants, 2017, 3(11): 859−865.
|
[9] |
Martínez-Abad A, Berglund J, Toriz G, et al. Regular motifs in xylan modulate molecular flexibility and interactions with cellulose surfaces[J]. Plant Physiology, 2017, 175(4): 1579−1592.
|
[10] |
Lawoko M, Henriksson G, Gellerstedt G. Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps[J]. Biomacromolecules, 2005, 6(6): 3467−3473.
|
[11] |
Mortimer J C, Miles G P, Brown D M, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17409−17414.
|
[12] |
Martinez-Abad A, Giummarella N, Lawoko M, et al. Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods[J]. Green Chemistry, 2018, 20: 2534−2546.
|
[13] |
Berglund J, Mikkelsen D, Flanagan B M, et al. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks[J]. Nature Communications, 2020(11): 4692.
|
[14] |
Lee C, Teng Q, Zhong R, et al. The four Arabidopsis REDUCED WALL ACETYLATION genes are expressed in secondary wall-containing cells and required for the acetylation of xylan[J]. Plant & Cell Physiology, 2011, 52(8): 1289−1301.
|
[15] |
Zhang L, Gao C, Mentink-Vigier F, et al. Arabinosyl deacetylase modulates the arabinoxylan acetylation profile and secondary wall formation[J]. The Plant Cell, 2019, 31(5): 1113−1126.
|
[16] |
Burgert I, Keplinger T. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis[J]. Journal of Experimental Botany, 2013, 64(15): 4635−4649.
|
[17] |
Silveira R L, Stoyanov S R, Gusarov S, et al. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength[J]. Journal of the American Chemical Society, 2013, 135(51): 19048−19051.
|
[18] |
Borrega M, Ahvenainen P, Serimaa R, et al. Composition and structure of balsa (Ochroma pyramidale) wood[J]. Wood Science & Technology, 2015, 49(2): 403−420.
|
[19] |
国家质量监督检验检疫总局, 国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935—2009[S]. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Method of testing in compressive strength parallel to grain of wood: GB/T 1935–2009[S]. Beijing: Standards Press of China, 2009.
|
[20] |
国家质量监督检验检疫总局, 国家标准化管理委员会. 木材抗弯强度试验方法: GB/T 1936.1—2009[S]. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Method of testing in bending strength of wood: GB/T 1936.1–2009[S]. Beijing: Standards Press of China, 2009.
|
[21] |
Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass[J]. Laboratory Analytical Procedure, 2008, 1617: 1−16.
|
[22] |
沈华杰, 邱坚, 杨玉山, 等. 6种木材的解剖特征与物理力学性能分析[J]. 西南林业大学学报(自然科学), 2020, 40(2): 155−160.
Shen H J, Qiu J, Yang Y S, et al. Analysis of anatomical character and physical-mechanical performance of 6 wood species[J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(2): 155−160.
|
[23] |
Timell T E. Recent progress in the chemistry of wood hemicelluloses[J]. Wood Science and Technology, 1967, 1(1): 45−70.
|
[24] |
Lichtenegger H, Reiterer A, Stanzl-Tschegg S E, et al. Variation of cellulose microfibril angles in softwoods and hardwoods: a possible strategy of mechanical optimization[J]. Journal of Structural Biology, 1999, 128(3): 257−269.
|
[25] |
Wang S, Jiang F, Xu X, et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers[J]. Advanced Materials, 2017, 29(35): 1702498.
|
[1] | Wang Xueyuan, Huang Yuxiang, Ma Erni. Research on mechanical properties of Phyllostachys edulis heat treatment materials based on cellulose skeleton[J]. Journal of Beijing Forestry University, 2023, 45(7): 130-138. DOI: 10.12171/j.1000-1522.20230079 |
[2] | Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333 |
[3] | Lin Qinyu, Wen Chengsheng, Diao Yue, Yan Lirong, Gao Ying. Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons[J]. Journal of Beijing Forestry University, 2019, 41(11): 146-154. DOI: 10.13332/j.1000-1522.20190209 |
[4] | Guan Cheng, Liu Jinhao, Zhang Houjiang, Zhou Lujing. Literature review of mechanical properties of full-size wood composite panels using nondestructive testing technique[J]. Journal of Beijing Forestry University, 2019, 41(9): 164-172. DOI: 10.13332/j.1000-1522.20180379 |
[5] | Su Ling, Pang Jiuyin, Ren Shixue, Li Shujun, Jiang Guiquan. Preparation of lignin-based polyelectrolyte film and its mechanical properties[J]. Journal of Beijing Forestry University, 2019, 41(2): 125-133. DOI: 10.13332/j.1000-1522.20180281 |
[6] | Jia Yuan, Qiao Jing, Zhang Jianan, Diao Yue, Gao Ying. Mechanical performance of CLT wall-to-floor joints with T connector[J]. Journal of Beijing Forestry University, 2018, 40(10): 123-130. DOI: 10.13332/j.1000-1522.20180243 |
[7] | GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098 |
[8] | PAN Ming-zhu, MEI Chang-tong.. Effects of nano SiO2-ammonium polyphosphate on the interfacial and mechanical properties of wood fiber-polyethylene composites.[J]. Journal of Beijing Forestry University, 2013, 35(5): 117-122. |
[9] | LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236. |
[10] | YU Yan, WANG Ge, FEI Ben-hua, CAO Shuang-ping, HUANG Yan-hui, CHEN Lu-tie. Development and application of microtester for mechanical property determination of short plant fibers.[J]. Journal of Beijing Forestry University, 2010, 32(3): 150-154. |
1. |
李俊峰. 机械设备无损检测技术与安全分析. 造纸装备及材料. 2022(09): 16-18 .
![]() | |
2. |
李焕,管成,张厚江,刘晋浩,周建徽,辛振波. 足尺胶合板弹性模量的两对边简支振动检测研究. 北京林业大学学报. 2021(02): 138-149 .
![]() | |
3. |
管成,辛振波,刘晋浩,张厚江,周建徽,李焕,柳苏洋. 3种边界条件下足尺定向刨花板的模态灵敏度和振动模态研究. 北京林业大学学报. 2021(12): 105-115 .
![]() | |
4. |
李亦珂. 自动化计算机控制系统在相关人造板设备中的应用分析. 林产工业. 2020(04): 109-112 .
![]() |