• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Kang Xiangyang. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15-22. DOI: 10.12171/j.1000-1522.20190412
Citation: Kang Xiangyang. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15-22. DOI: 10.12171/j.1000-1522.20190412

Thoughts on tree breeding strategies

More Information
  • Received Date: October 28, 2019
  • Revised Date: November 22, 2019
  • Available Online: November 27, 2019
  • Published Date: November 30, 2019
  • The low level of plantation cultivation in China is due to insufficient investment in manpower and financial resources in the field of tree breeding, and insufficient attention and implementation of breeding strategies. It leads to the difficulty of maintaining the basic breeding cycle of tree genetic improvement, and can not sustain the continuous improvement of the genetic improvement level of trees and the improvement of plantation productivity. This article comprehensively analyzed the development experience, theory and technology achievements of tree breeding at home and abroad, and put forward several issues that need to be paid attention to in the formulation and implementation of tree breeding strategies. Varieties have regionality, temporality and economic attributes. Ecological value belongs to the subsidiary benefits of planting improved varieties. It is necessary to formulate breeding objectives and breeding cycles that are scientific, specific and have certain market competitive advantages. On this basis, the construction and management of base population, selected population and breeding population of tree species should be strengthened. Scientific experimental design and analysis methods should be adopted to ensure accurate and efficient genetic testing and selection. We should continuously push on the construction of advanced-cycle breeding population, and rationally adopt techniques such as promoting flowering and fruiting, related selection or marker assisted selection to accelerate the process of mating and selection, continuously improve the genetic quality of base populations and selected populations, and even achieve the production and application of distant hybrid varieties with super-strong advantages. For the species that can reproduce asexually, physical and chemical mutagenesis and chromosome doubling can be applied at a certain stage of genetic improvement to further increase the accumulation and utilization of beneficial mutations. For the excellent varieties that have been applied to production but still have insufficient, further optimization can be carried out by molecular breeding such as genetic transformation and gene editing. Mating, genetic testing and selection are the core of the breeding cycle and the basis for further implementation of other breeding techniques, which need to be given more attention.
  • [1]
    陈晓阳, 沈熙环. 林木育种学[M]. 北京: 高等教育出版社, 2006.

    Chen X Y, Shen X H. Tree breeding[M]. Beijing: Higher Education Press, 2006.
    [2]
    朱之悌. 毛白杨遗传改良[M]. 北京: 中国林业出版社, 2006.

    Zhu Z T. Genetic improvement of Populus tomentosa Carr.[M]. Beijing: China Forestry Publishing House, 2006.
    [3]
    White T L, Adams W T, Neale D B. Forest genetics[M]. Cambridge: Published by CABI, 2007.
    [4]
    MartinT A, Johnsen K H, White T L. Ideotype development in southern pines: rationale and strategies for overcoming scale-related obstacles[J]. Forest Science, 2001, 47(1): 21−28.
    [5]
    Zobel B, Talbert J. Applied forest tree improvement[M]. New York: Wiley, 1984.
    [6]
    Borralho N M G, Dutkowski G W. Comparison of rolling front and discrete generation breeding strategies for trees[J]. Canadian Journal of Forest Research, 2011, 28(7): 987−993.
    [7]
    White T L, Hodge G R, Powell G L. An advanced-generation tree improvement plan for slash pine in the southeastern United States[J]. Silvae Genetica, 1993, 42(6): 359−371.
    [8]
    McKeand E, Beineke F. Sublining for half-sib breeding populations of forest trees[J]. Silvae Genetica, 1980, 29(1): 14−17.
    [9]
    Jayawickrama K J S, Carson M J. A breeding strategy for the new zealand radiata pine breeding cooperative[J]. Silvae Genetica, 2000, 49: 82−90.
    [10]
    Barnes R L, Bengtson G W. Effects of fertilization, irrigation, and cover cropping on flowering and on nitrogen and soluble sugar composition of slash pine[J]. Forest Science, 1968, 14(2): 172−180.
    [11]
    Bramlett D L. Genetic gain from mass controlled pollination and top working[J]. Journal of Forestry, 1997, 95(3): 15−19.
    [12]
    McKeand S E, Raley F. Interstock effect on strobilus initiation in top grafted loblolly pine[J]. Forest Genetics, 2000, 7(3): 179−182.
    [13]
    Ho R H. Gibberellin A4/7 enhances seed-cone production in field-grown Black spruce[J]. Canadian Journal of Forest Research, 1988, 18(1): 139−142. doi: 10.1139/x88-022
    [14]
    Ho R H. Promotion of cone production on white spruce grafts by Gibberellin A4/7 application[J]. Forest Ecology and Management, 1988, 23(1): 39−46. doi: 10.1016/0378-1127(88)90012-6
    [15]
    Almqvist C, Ekberg I. Interstock and GA 4/7 effects on flowering after top grafting in Pinus sylvestris[J]. Forest Science, 2002, 8(4): 279−284.
    [16]
    康向阳. 关于林木无性系育种策略的思考[J]. 北京林业大学学报, 2019, 41(7):1−9.

    Kang X Y. Thinking about clonal breeding strategy of forest trees[J]. Journal of Beijing Forestry University, 2019, 41(7): 1−9.
    [17]
    Leite S M M, Bonine C A, Mori E S, et al. Genetic variability in a breeding population of Eucalyptus urophylla S.T. Blake[J]. Silvae Genetica, 2002, 51(5): 253−256.
    [18]
    董虹妤, 刘青华, 周志春, 等. 马尾松子代生长杂种优势与亲本配合力、遗传距离的相关性[J]. 林业科学, 2017, 53(2):65−75.

    Dong H, Liu Q, Zhou Z, et al. Correlation between Heterosis in the growth of progeny and combining ability and genetic distance of the parents for Pinus massoniana[J]. Scientia Silvae Sinicae, 2017, 53(2): 65−75.
    [19]
    El-Kassaby Y A, Lindgren D. Increasing the efficiency of breeding without breeding through phenotypic pre-selection in open pollinated progenies[C]//Joint meeting of the South. For. tree improve. conf. and the Western for. genetics association, Galveston, Texas. 2007: 12−19.
    [20]
    Wang X, Torimaru T, Lindgren D, et al. Marker-based parentage analysis facilitates low input ‘breeding without breeding ’ strategies for forest trees[J]. Tree Genetics & Genomes, 2010, 6(2): 227−235.
    [21]
    Baruca A A, Jakše J, Bandelj D. Paternity analysis of the olive variety ‘Istrska Belica’ and identification of pollen donors by microsatellite markers[J]. The Scientific World Journal, 2014: 1−6.
    [22]
    El-Kassaby Y A, Cappa E P, Liewlaksaneeyanawin C, et al. Breeding without breeding: is a complete pedigree necessary for efficient breeding?[J/OL]. PLoS One, 2011, 6(10): e25737 [2019−10−25]. https://doi.org/10.1371/journal.pone.0025737.
    [23]
    Han Z Q, Gao P, Geng X N, et al. Identification of the male parent of superior half-sib Populus tomentosa individuals based on SSR markers[J]. Molecular Breeding, 2017, 37(12): 155. doi: 10.1007/s11032-017-0754-1
    [24]
    袁虎威, 王晓飞, 杜清平, 等. 基于BWB的油松初级种子园混合子代优树选择与配置设计[J]. 北京林业大学学报, 2017, 39(11):28−34.

    Yuan H W, Wang X F, Du Q P, et al. BWB-assisted plus tree selection and deployment design for bulked progenies of the first-cycle Chinese pine seed orchard[J]. Journal of Beijing Forestry University, 2017, 39(11): 28−34.
    [25]
    Meuwissen T, Goddard M. Accurate prediction of genetic values for complex traits by whole- genome resequencing[J]. Genetics, 2010, 185(2): 623−631. doi: 10.1534/genetics.110.116590
    [26]
    Zhao Y S, Zeng J, Fernando R, et al. Genomic prediction of hybrid wheat performance[J]. Crop Science, 2013, 53(3): 802−810. doi: 10.2135/cropsci2012.08.0463
    [27]
    Wolc A, Kranis A, Arango J, et al. Implementation of genomic selection in the poultry industry[J]. Animal Frontiers, 2016, 6(1): 23−31. doi: 10.2527/af.2016-0004
    [28]
    Grattapaglia D, Silva-Junior O B, Resende R T, et al. Quantitative genetics and genomics converge to accelerate forest tree breeding[J]. Frontiers in Plant Science, 2018, 9: 1693. doi: 10.3389/fpls.2018.00010
    [29]
    Fillatti J J, Sellmer I, McGown B, et al. Agrobacterium mediated transformation and regeneration of Populus[J]. Molecular and General Genetics, 1987, 206(2): 192−199. doi: 10.1007/BF00333574
    [30]
    田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育[J]. 生物工程学报, 1993, 9(4):291−297. doi: 10.3321/j.issn:1000-3061.1993.04.017

    Tian Y C, Li T Y, Mang K Q, et al. Insect tolerance transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene[J]. Chinese Journal of Biotechnology, 1993, 9(4): 291−297. doi: 10.3321/j.issn:1000-3061.1993.04.017
    [31]
    苏晓华, 张冰玉, 黄秦军.杨树基因工程育种[M]. 北京: 科学出版社, 2009.

    Su X H, Zhang B Y, Huang Q J. Poplar genetic engineering breeding[M]. Beijing: Science Press, 2009.
    [32]
    Lambeth C C, Buijtenen J P, Van Duke S D, et al. Early selection is effective in 20-year-old genetic test of loblolly pine[J]. Silvae Genetica, 1983, 32(5/6): 210−215.
    [33]
    Foster G S. Trends in genetic parameters with stand development and their influence on early selection for volume growth in lobolly pine[J]. Silvae Genetica, 1986, 32(4): 944−959.
    [34]
    Muranty H, Jorge V, Bastien C, et al. Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops[J]. Tree Genetics & Genomes, 2014, 10(6): 1491−1510.
    [35]
    Devey M, Delfino-Mix A, Donaldson D, et al. Efficient mapping of a gene for resistance to white pine blister rust in sugar pine[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(6): 2066−2070. doi: 10.1073/pnas.92.6.2066
    [36]
    Jin J Q, Yao M Z, Ma C L, et al. Association mapping of caffeine content with TCS1 in tea plant and its related species[J]. Plant Physiology & Biochemistry, 2016, 105: 251−259.
    [37]
    Sun C, Lai M, Zhang S G, et al. Age-related trends in genetic parameters for wood properties in Larix kaempferi clones and implications for early selection[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 482−492. doi: 10.15302/J-FASE-2017184
    [38]
    Strauss S, Lande R, Namkoong G. Limitations of molecular-marker-aided selection in forest tree breeding[J]. Canadian Journal of Forest Research, 1992, 22(7): 1050−1061. doi: 10.1139/x92-140
    [39]
    Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects[J]. Plant Molecular Biology, 2005, 57: 461−485. doi: 10.1007/s11103-005-0257-z
    [40]
    朱之悌. 全国毛白杨优树资源收集、保存和利用的研究[J]. 北京林业大学学报, 1992, 14(增刊3):1−25.

    Zhu Z T. Collection, conservation and utilization of plus tree resources of Populus tomentosa in China[J]. Journal of Beijing Forestry University, 1992, 14(Suppl.3): 1−25.
    [41]
    Sedjo R A, Botkin D B. Using forest plantations to spare natural forests[J]. Environment, 1997, 39(10): 14−20.
    [42]
    许传德. 从连续八次森林资源清查数据看我国森林经营[J]. 林业经济, 2014, 36(4):8−11, 36.

    Xu C D. Forest management in china from data of eight forest resources inventories[J]. Forestry Economics, 2014, 36(4): 8−11, 36.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (3558) PDF downloads (182) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return