• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ma Su, Zhen Jin, Wang Jiayu, Zhang Derong, Yu Zhiming, Tang Ruilin, Zhang Yang. Effects of styrene-acrylic emulsion doping on the properties of geopolymer wood adhesives[J]. Journal of Beijing Forestry University, 2020, 42(7): 131-139. DOI: 10.12171/j.1000-1522.20200019
Citation: Ma Su, Zhen Jin, Wang Jiayu, Zhang Derong, Yu Zhiming, Tang Ruilin, Zhang Yang. Effects of styrene-acrylic emulsion doping on the properties of geopolymer wood adhesives[J]. Journal of Beijing Forestry University, 2020, 42(7): 131-139. DOI: 10.12171/j.1000-1522.20200019

Effects of styrene-acrylic emulsion doping on the properties of geopolymer wood adhesives

More Information
  • Received Date: January 09, 2020
  • Revised Date: June 18, 2020
  • Available Online: July 03, 2020
  • Published Date: August 13, 2020
  •   Objective  Geopolymer has great research potential in wood adhesive industry due to its high mechanical properties and weather resistance. But the high brittleness and low interfacial compatibility of the inorganic network limit its bonding strength with wood. In order to increase the toughness and the shear strength, the study used geopolymer as raw material of wood adhesives to explore the application possibility of geopolymer in the field of wood adhesives and solve the harm of formaldehyde emission from wood-based panel products from the perspective of raw materials.
      Method  In this experiment, the geopolymer adhesive took styrene-acrylic emulsion as the adulterant, metakaolin (MK) as the raw material and silane (KH-550) as the coupling agent, activated by alkali and then cured to solid. Though adjusting the content of styrene-acrylic emulsion and curing process, the characteristics of geopolymer matrix and its effect on shear performance of geopolymer-based wood adhesive were obtained.
      Result  Compared with pure geopolymer, adding styrene-acrylic emulsion decreased the compressive strength and the flexural strength of the geopolymer matrix, reduced the compression-flexure ratio to 6.09, improved the shear strength to 2.6 MPa, decreased the contact angle by 4.1% as well as increased roughness of the surface of geopolymer by creating more plastic cavities and microcracks. The addition of KH-550, though decreased the compressive strength and the flexural strength, significantly promoted the modification. The compression-flexure ratio was reduced to 5.96; the shear strength was increased to 3.6 MPa; the contact angle was decreased by 25.7%; the surface’s cavities were smaller and the microstructure was more tight. The silane played a coupling role in the matrix, which makes the styrene-acrylic emulsion chemically link with the geopolymer.
      Conclusion  Styrene-acrylic emulsion organic doping and silane coupling work synergistically to form a tough film in metakaolin-based geopolymer which improves geopolymer’s brittleness and achieve a toughening effect, and to improve the interfacial compatibility of the geopolymer and wood, thus enhancing the shear strength of the geopolymer-based wood adhesive.
  • [1]
    Rovira J, Roig N, Nadal M, et al. Human health risks of formaldehyde indoor levels: an issue of concern[J]. Journal of Environmental Science and Health, Part A, 2016, 51(4): 357−363. doi: 10.1080/10934529.2015.1109411
    [2]
    刘路路, 范凤英, 郭鑫鑫. 关于地质聚合物的综述[J]. 四川水泥, 2019(4):311. doi: 10.3969/j.issn.1007-6344.2019.04.292

    Liu L L, Fan F Y, Guo X X. A review of geopolymers[J]. Sichun Cement, 2019(4): 311. doi: 10.3969/j.issn.1007-6344.2019.04.292
    [3]
    王义超, 余江滔, 魏琳卓, 等. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16):2665−2670. doi: 10.11896/cldb.18070111

    Wang Y C, Yu J T, Wei L Z, et al. Water-resistance property of ultra-high toughness magnesium oxychloride cement-based composites[J]. Materials Reports, 2019, 33(16): 2665−2670. doi: 10.11896/cldb.18070111
    [4]
    蔡少敏. 磷酸镁水泥在土木工程中的应用[J]. 广东建材, 2019, 35(7):23−26. doi: 10.3969/j.issn.1009-4806.2019.07.009

    Cai S M. Application of magnesium phosphate cement in civil engineering[J]. Guangdong Building Materials, 2019, 35(7): 23−26. doi: 10.3969/j.issn.1009-4806.2019.07.009
    [5]
    李树霖. 地质聚合物无机胶黏剂的应用研究[D]. 长沙: 长沙理工大学, 2015.

    Li S L. The application and research of inorganic geopolymer adhesive[D]. Changsha: Changsha University of Science & Technology, 2015.
    [6]
    Ye H Z, Zhang Y, Yu Z M. Wood flour’s effect on the properties of geopolymer-based composites at different curing times[J]. Bioresource Technology, 2018, 13(2): 2499−2514.
    [7]
    Ali S, Johannes W, Joachim H. Geopolymers as potential new binder class for the wood based composite industry[J]. Holzforschung, 2016, 70(8): 755−761. doi: 10.1515/hf-2015-0206
    [8]
    Ali S, Johannes W, Joachim H. Effect of aluminosilicate powders on the applicability of innovative geopolymer binders for wood-based composites[J]. European Journal of Wood and Wood Products, 2017, 75(6): 893−902. doi: 10.1007/s00107-017-1172-0
    [9]
    朱海洋. 钢纤维粉煤灰地质聚合物混凝土的力学性能研究[D]. 阜新: 辽宁工程技术大学, 2017.

    Zhu H Y. Study on basic properties of steel fiber fly ash geopolymer concrete[D]. Fuxin: Liaoning Project Technology University, 2017.
    [10]
    Yan S, He P G, Jia D C, et al. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites[J]. Ceramics International, 2016, 42(6): 7837−7843. doi: 10.1016/j.ceramint.2016.01.197
    [11]
    刘贵起, 徐洪钟, 孙义杰, 等. 纤维增韧地质聚合物改良膨胀土力学特性试验[J]. 南京工业大学学报(自然科学版), 2019, 41(4):456−462.

    Liu G Q, Xu H Z, Sun Y J, et al. Experiments on mechanical properties of fiber reinforced geopolymer for expansive soil improvement[J]. Journal of Nanjing Tech University (Natural Science Edition), 2019, 41(4): 456−462.
    [12]
    赵启迪, 薛平, 贾明印, 等. 水溶性树脂改性地质聚合物材料的性能研究[J]. 硅酸盐学报, 2018, 37(10):3141−3146.

    Zhao Q D, Xue P, Jia M Y, et al. Study on the properties of the water-soluble organic modified geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3141−3146.
    [13]
    阚鑫禹, 薛平, 贾明印, 等. 聚乙烯醇改性地质聚合物复合材料的性能研究[J]. 矿产综合利用, 2018(3):125−128. doi: 10.3969/j.issn.1000-6532.2018.03.026

    Kan X Y, Xue P, Jia M Y, et al. Study on properties of polyvinyl alcohol modified geopolymer composites[J]. Multipurpose Utilization of Mineral Resources, 2018(3): 125−128. doi: 10.3969/j.issn.1000-6532.2018.03.026
    [14]
    Farizkha A, Nur A, Nurfadill, et al. Development of coconut trunk fiber geopolymer hybrid composite for structural engineering materials[J]. IOP Conference Series: Materials Science and Engineering, 2017, 180(1): 120−126.
    [15]
    李相国, 段超群, 马保国, 等. 聚合物对偏高岭土地聚物的改性研究[J]. 混凝土, 2013(12):103−106. doi: 10.3969/j.issn.1002-3550.2013.12.028

    Li X G, Duan C Q, Ma B G, et al. Research on polymer-modified metakaolin-based geopolymer material[J]. Concrete, 2013(12): 103−106. doi: 10.3969/j.issn.1002-3550.2013.12.028
    [16]
    王亚超. 碱激发粉煤灰基地质聚合物强化增韧及耐久性能研究[D]. 西安: 西安建筑科技大学, 2014.

    Wang Y C. Investigations on reinforcing, toughening and durability of alkali-acticated fly ash-based geopolymer[D]. Xi’an: Xi’an University of Architecture and Technology, 2014.
    [17]
    王亚超. 有机树脂增韧碱激发粉煤灰基地质聚合物复合材料的性能研究[D]. 西安: 西安建筑科技大学, 2011.

    Wang Y C. Study on performance of alkali-acticated flyash-based geopolymer reinforced by organic resin[D]. Xi’an: Xi’an University of Architecture and Technology, 2011.
    [18]
    Shi C J, Jiménez A F, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750−763. doi: 10.1016/j.cemconres.2011.03.016
    [19]
    东艳君. 聚合物水泥砂浆力学性能及微观结构表征研究[J]. 科技视界, 2017(3):172−173. doi: 10.3969/j.issn.2095-2457.2017.03.137

    Dong Y J. Study on mechanical properties and microstructure characterization of polymer cement mortar[J]. Science & Technology Vision, 2017(3): 172−173. doi: 10.3969/j.issn.2095-2457.2017.03.137
    [20]
    张浩, 高屹, 黄长虹, 等. 纤维对聚合物砂浆力学强度和柔韧性影响[J]. 低温建筑技术, 2020, 42(1):8−10.

    Zhang H, Gao Y, Huang C H, et al. Effect of polymer and fiber on mechanical properties and flexibility of mortar[J]. Low Temperature Architecture Technology, 2020, 42(1): 8−10.
    [21]
    国家林业局. 结构用集成材: GB/T 26899−2011[S]. 北京: 中国标准出版社, 2011.

    State Forestry Bureau. Structural glued laminated timber: GB/T 26899−2011[S]. Beijing: Standards Press of China, 2011.
    [22]
    李传习, 李游, 高有为, 等. 纳米SiO2掺量对胶粘CFRP板−钢搭接界面黏结性能的影响[J/OL]. 复合材料学报, 2020, 1−18. [2020−06−26]. http://DOI:10.13801/j.cnki.fhclxb.20200319.001" target="_blank">10.13801/j.cnki.fhclxb.20200319.001">http://DOI:10.13801/j.cnki.fhclxb.20200319.001.

    Li C X, Li Y, Gao Y W, et al. Effect of nano-SiO2 content on the interface performance of glued CFRP-steel specimen[J/OL]. Acta Materiae Compositae Sinica, 2020, 1−18. [2020−06−26]. http://DOI:10.13801/j.cnki.fhclxb.20200319.001" target="_blank">10.13801/j.cnki.fhclxb.20200319.001">http://DOI:10.13801/j.cnki.fhclxb.20200319.001.
    [23]
    田焜, 孔贇, 王月兰, 等. 硅烷偶联剂改性偏高岭土对混凝土抗渗性的影响[J]. 混凝土与水泥品, 2018(3):25−28.

    Tian K, Kong Y, Wang Y L, et al. Influence of metakaolin modified by silence coupling agent on the permeability of concrete[J]. China Concrete and Cement Products, 2018(3): 25−28.
    [24]
    朱宝贵, 焦宝祥, 张长森, 等. 硅烷偶联剂对地聚合物力学性能及微观结构的影响[J]. 硅酸盐通报, 2018, 37(10):3066−3070.

    Zhu B G, Jiao B X, Zhang C S, et al. Effect of silane coupling agent on mechanical properties and microstructure of geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3066−3070.
    [25]
    李盾兴. 高强度偏高岭土基地质聚合物的制备及性能研究[D]. 太原: 太原理工大学, 2017.

    Li D X. The study of preparation and properties of high-strength metakaolin-based geopolymer[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [26]
    张娜, 莫宏兵. 过氧化氢和硅烷偶联剂联合处理对纤维桩与不同粘接系统的影响[J]. 医学理论与实践, 2019, 32(7):940−942.

    Zhang N, Mo H B. Effects of hydrogen peroxide and silane coupling agents on fiber posts and different bonding systems[J]. Journal of Medical Theory and Practice, 2019, 32(7): 940−942.
    [27]
    李美玲, 庞瑶, 李南, 等. 硅烷偶联剂改性环氧树脂对透明椴木单板的界面增强作用[J]. 中国人造板, 2018, 25(8):22−25. doi: 10.3969/j.issn.1673-5064.2018.08.007

    Li M L, Pang Y, Li N, et al. Interfacial compatibilization of silane coupling agent modified epoxy resin for transparent basswood[J]. China Wood-Based Panels, 2018, 25(8): 22−25. doi: 10.3969/j.issn.1673-5064.2018.08.007
    [28]
    彭光, 许金余, 任韦波. 硅烷偶联剂改性苯丙乳液水泥复合材料的力学性能及孔隙结构[J]. 硅酸盐通报, 2018, 37(10):3076−3081.

    Peng G, Xu J Y, Ren W B. mechanical properties and pore structure of silane coupling agent modified styrene-acrylic emulsion cement composite material[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3076−3081.
    [29]
    唐建明, 李剑, 石磊. 改性聚丙烯纤维增强磷酸镁水泥砂浆的力学性能研究[J]. 重庆建筑, 2017, 16(2):41−44. doi: 10.3969/j.issn.1671-9107.2017.02.041

    Tang J M, Li J, Shi L. Study on mechanical properties of modified polypropylene fibers reinforced magnesium phosphate cement mortar[J]. Chongqing Architecture, 2017, 16(2): 41−44. doi: 10.3969/j.issn.1671-9107.2017.02.041
    [30]
    潘帅军. 特殊润湿功能表面的理论、构筑与应用[D]. 长沙: 湖南大学, 2015.

    Pan S J. Advanced functional surfaces with extreme wetting behaviors: modeling, fabrication and application[D]. Changsha: Hunan University, 2015.

Catalog

    Article views (3199) PDF downloads (63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return