Citation: | Hao Longfei, Hao Wenying, Liu Tingyan, Zhang Min, Xu Jikang, Siqinbilige. Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments[J]. Journal of Beijing Forestry University, 2021, 43(4): 1-7. DOI: 10.12171/j.1000-1522.20200071 |
[1] |
Johnson D W, Turner J. Nitrogen budgets of forest ecosystems: a review[J]. Forest Ecology and Management, 2014, 318: 370−379. doi: 10.1016/j.foreco.2013.08.028
|
[2] |
杨涵越. 模拟氮沉降对克氏针茅草原N2O排放及氮去向的影响研究[D]. 北京: 清华大学, 2017.
Yang H Y. Study on the effect of stimulated N deposition on N2O emission and fate of nitrogen in a Stipa krylovii steppe[D]. Beijing: Tsinghua University, 2017.
|
[3] |
张菊, 康荣华, 赵斌, 等. 内蒙古温带草原氮沉降的观测研究[J]. 环境科学, 2013, 34(9):3552−3556.
Zhang J, Kang R H, Zhao B, et al. Monitoring nitrogen deposition on temperate grassland in Inner Mongolia[J]. Environmental Science, 2013, 34(9): 3552−3556.
|
[4] |
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500−522.
Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500−522.
|
[5] |
李化山, 汪金松, 法蕾, 等. 模拟氮沉降对油松幼苗生长的影响[J]. 应用与环境生物学报, 2013, 19(5):774−780. doi: 10.3724/SP.J.1145.2013.00774
Li H S, Wang J S, Fa L, et al. Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5): 774−780. doi: 10.3724/SP.J.1145.2013.00774
|
[6] |
辛月, 尚博, 陈兴玲, 等. 氮沉降对臭氧胁迫下青杨光合特性和生物量的影响[J]. 环境科学, 2016, 37(9):3642−3649.
Xin Y, Shang B, Chen X L, et al. Effects of elevated ozone and nitrogen deposition on photosynthetic characteristics and biomass of Populus cathayana[J]. Environmental Science, 2016, 37(9): 3642−3649.
|
[7] |
刘瑞雪, 吴泓瑾, 黄国柱, 等. 氮添加对树木根系特性的影响[J]. 应用生态学报, 2019, 30(5):1735−1742.
Liu R X, Wu H J, Huang G Z, et al. Effects of nitrogen addition on tree root traits[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1735−1742.
|
[8] |
祁金玉, 邓继峰, 尹大川, 等. 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响[J]. 生态学报, 2019, 39(8):2826−2832.
Qi J Y, Deng J F, Yin D C, et al. Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings[J]. Acta Ecologica Sinica, 2019, 39(8): 2826−2832.
|
[9] |
Liu M H, Sun J, Li Y, et al. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil[J]. Chemosphere, 2017, 167: 204−211. doi: 10.1016/j.chemosphere.2016.09.145
|
[10] |
赵敏, 郝文颖, 宁心哲, 等. 红花尔基樟子松优良抗旱菌树组合的筛选[J]. 植物研究, 2020, 40(1):133−140.
Zhao M, Hao W Y, Ning X Z, et al. Screening of excellent ectomycorrhizal fungi-tree for drought resistant with Pinus sylvestris var. mongolica[J]. Bulletin of Botanical Research, 2020, 40(1): 133−140.
|
[11] |
Goodale C L. Multiyear fate of a 15N tracer in a mixed deciduous forest: retention, redistribution, and differences by mycorrhizal association[J]. Global Change Biology, 2017, 23(2): 867−880. doi: 10.1111/gcb.13483
|
[12] |
Avis P G, Mueller G M, Lussenhop J. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition[J]. New Phytologist, 2008, 179(2): 472−483. doi: 10.1111/j.1469-8137.2008.02491.x
|
[13] |
王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3):741−748.
Wang K, Zhao C J, Zhang R S, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
|
[14] |
蔚晓燕, 李静, 唐明. 施氮与接种外生菌根真菌对油松幼苗生物量和光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2013, 41(10):42−48,58.
Wei X Y, Li J, Tang M. Effects of nitrogen application and inoculating ectomycorrhizal fungi on biomass and photosynthetic characteristics of Pinus tabulaeformis seedlings[J]. Journal of Northwest A&F University (Natural Science Edition), 2013, 41(10): 42−48,58.
|
[15] |
Lin J X, Wang Y G, Sun S N, et al. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Science of the Total Environment, 2017, 576: 234−241. doi: 10.1016/j.scitotenv.2016.10.091
|
[16] |
张中峰, 张金池, 黄玉清, 等. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响[J]. 生态学杂志, 2015, 34(5):1198−1204.
Zhang Z F, Zhang J C, Huang Y Q, et al. Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings[J]. Chinese Journal of Ecology, 2015, 34(5): 1198−1204.
|
[17] |
宋平, 张一, 张蕊, 等. 低磷胁迫下马尾松无性系磷效率性状对氮沉降的响应[J]. 植物营养与肥料学报, 2017, 23(2):502−511.
Song P, Zhang Y, Zhang R, et al. Responses of phosphorus efficiency to simulated nitrogen deposition under phosphorus deficiency in Pinus massoniana clones[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 502−511.
|
[18] |
吴斐. 氮及丛枝菌根真菌对欧美杨107生长的影响机制研究[D]. 咸阳: 西北农林科技大学, 2018.
Wu P. Effects of nitrogen and arbuscular mycorrhizal fungi on the growth of Populus × Canadensis ‘NEVA’[D]. Xianyang: Northwest A&F University, 2018.
|
[19] |
王如岩, 于水强, 张金池, 等. 干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(6):23−27.
Wang R Y, Yu S Q, Zhang J C, et al. Effects of mycorrhizal fungus inoculation on the root of Cupressus duclouxiana and Catalpa bungei seedlings under drought stress[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(6): 23−27.
|
[20] |
闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4):36−43.
Yan G Y, Wang X C, Xing Y J, et al. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36−43.
|
[21] |
陈冠陶, 郑军, 彭天驰, 等. 扁刺栲不同根序细根形态和化学特征及其对短期氮添加的响应[J]. 应用生态学报, 2017, 28(11):3461−3468.
Chen G T, Zheng J, Peng T C, et al. Fine root morphology and chemistry characteristics in different branch orders of Castanopsis platyacantha and their responses to nitrogen addition[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3461−3468.
|
[22] |
张蓓蓓, 张辉, 景琦, 等. 两种水分条件下真菌接种及氮肥施加对小麦生长、生理及氮磷吸收的影响[J]. 干旱地区农业研究, 2019, 37(1):214−220.
Zhang B B, Zhang H, Jing Q, et al. Effect of mycorrhizal fungi inoculation and nitrogen fertilization on physiological characteristics, growth, and nitrogen and phosphorus uptake of wheat under two distinct water regimes[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 214−220.
|
[23] |
王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016, 27(4):1294−1302.
Wang W N, Wang Y, Wang S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: a review[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1294−1302.
|
[24] |
Eissenstat D M, Kucharski J M, Zadworny M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees ina temperate forest[J]. New Phytologist, 2015, 208(1): 114−124. doi: 10.1111/nph.13451
|
[25] |
王艺, 丁贵杰. 水分胁迫下外生菌根对马尾松幼苗养分吸收的影响[J]. 林业科学研究, 2013, 26(2):227−233.
Wang Y, Ding G J. Influence of ectomycorrhiza on nutrient absorption of Pinus massoniana seedlings under water stress[J]. Forest Research, 2013, 26(2): 227−233.
|
[26] |
吴强盛, 袁芳英, 费永俊, 等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响[J]. 草业学报, 2014, 23(1):199−204.
Wu Q S, Yuan F Y, Fei Y J, et al. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover[J]. Acta Prataculturae Sinica, 2014, 23(1): 199−204.
|
[27] |
陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展[J]. 生态学报, 2016, 36(17):5285−5297.
Chen W L, Li J, Zhu H H, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms[J]. Acta Ecologica Sinica, 2016, 36(17): 5285−5297.
|
[28] |
王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1):260−268.
Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260−268.
|
[29] |
赵青华, 孙立涛, 王玉, 等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J]. 植物生理学报, 2014, 50(2):164−170.
Zhao Q H, Sun L T, Wang Y, et al. Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in Camellia sinensis (L.) O. Kuntze[J]. Plant Physiology Journal, 2014, 50(2): 164−170.
|
[30] |
陈廷廷. 土壤增温和氮沉降对杉木幼苗细根解剖、形态特征和菌根侵染的影响[D]. 福州: 福建师范大学, 2018.
Chen T T. Effects of soil warming and nitrogen deposition on fine root anatomical and morphological traits and arbuscular mycorrhizal colonization of Chinese fir seedlings[D]. Fuzhou: Fujian Normal University, 2018.
|