• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hao Longfei, Hao Wenying, Liu Tingyan, Zhang Min, Xu Jikang, Siqinbilige. Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments[J]. Journal of Beijing Forestry University, 2021, 43(4): 1-7. DOI: 10.12171/j.1000-1522.20200071
Citation: Hao Longfei, Hao Wenying, Liu Tingyan, Zhang Min, Xu Jikang, Siqinbilige. Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments[J]. Journal of Beijing Forestry University, 2021, 43(4): 1-7. DOI: 10.12171/j.1000-1522.20200071

Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments

More Information
  • Received Date: March 13, 2020
  • Revised Date: July 13, 2020
  • Available Online: March 16, 2021
  • Published Date: April 29, 2021
  •   Objective  The aim of this study was to investigate the responses of root architecture and nutrient absorption capacity of one-year-old Pinus sylvestris var. mongolica to nitrogen addition and inoculation of ectomycorrhizal fungi.
      Method  The one-year-old mycorrhizal (mixed inoculated with 8 ectomycorrhizal fungi, HJ) and non-mycorrhizal (no inoculation, WJ) seedlings of P. sylvestris var. mongolica were selected. Four nitrogen addition treatments were set, including no nitrogen (CK, 0 kg/(ha·year)), low nitrogen (LN, 15 kg/(ha·year)), middle nitrogen (MN, 30 kg/(ha·year)) and high nitrogen (HN, 60 kg/(ha·year)) treatments. The root morphology (including the total root length, surface area, volume, bifurcations, tips, average diameter) and nutrient content of the seedlings were measured.
      Result  (1) There were significant differences between the seedling biomass of two inoculation treatments under CK, MN and HN treatments. Under CK treatment, the biomass of mycorrhizal seedlings increased by 54.3% than that of the non-mycorrhizal seedlings. Under MN and HN treatments, the biomass of mycorrhizal seedlings decreased by 17.8% and 23.7% than that of non-mycorrhizal seedlings, respectively. (2) The total root length, surface area, number of tips of one-year-old P. sylvestris var. mongolica seedlings with diameter of 0 − 0.5 mm were affected significantly by the nitrogen addition and inoculation treatments. Increasing of nitrogen addition, the root morphological indexes of non-mycorrhizal seedlings showed a tendency of first increased and then decreased, but that of mycorrhizal seedlings showed a decreasing tendency. (3) Compared with CK, the nitrogen and phosphorus contents of the non-mycorrhizal seedlings were significantly increased by nitrogen addition treatments, but that of mycorrhizal seedlings was promoted by LN treatment and inhibited by HN treatment.
      Conclusion  There is a synergistic effect of low nitrogen addition and inoculation treatments on the root morphology and nutrient content of seedlings. The effect of inoculation on root morphology and nutrient content of seedlings is weakened by high nitrogen addition.
  • [1]
    Johnson D W, Turner J. Nitrogen budgets of forest ecosystems: a review[J]. Forest Ecology and Management, 2014, 318: 370−379. doi: 10.1016/j.foreco.2013.08.028
    [2]
    杨涵越. 模拟氮沉降对克氏针茅草原N2O排放及氮去向的影响研究[D]. 北京: 清华大学, 2017.

    Yang H Y. Study on the effect of stimulated N deposition on N2O emission and fate of nitrogen in a Stipa krylovii steppe[D]. Beijing: Tsinghua University, 2017.
    [3]
    张菊, 康荣华, 赵斌, 等. 内蒙古温带草原氮沉降的观测研究[J]. 环境科学, 2013, 34(9):3552−3556.

    Zhang J, Kang R H, Zhao B, et al. Monitoring nitrogen deposition on temperate grassland in Inner Mongolia[J]. Environmental Science, 2013, 34(9): 3552−3556.
    [4]
    鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500−522.

    Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500−522.
    [5]
    李化山, 汪金松, 法蕾, 等. 模拟氮沉降对油松幼苗生长的影响[J]. 应用与环境生物学报, 2013, 19(5):774−780. doi: 10.3724/SP.J.1145.2013.00774

    Li H S, Wang J S, Fa L, et al. Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5): 774−780. doi: 10.3724/SP.J.1145.2013.00774
    [6]
    辛月, 尚博, 陈兴玲, 等. 氮沉降对臭氧胁迫下青杨光合特性和生物量的影响[J]. 环境科学, 2016, 37(9):3642−3649.

    Xin Y, Shang B, Chen X L, et al. Effects of elevated ozone and nitrogen deposition on photosynthetic characteristics and biomass of Populus cathayana[J]. Environmental Science, 2016, 37(9): 3642−3649.
    [7]
    刘瑞雪, 吴泓瑾, 黄国柱, 等. 氮添加对树木根系特性的影响[J]. 应用生态学报, 2019, 30(5):1735−1742.

    Liu R X, Wu H J, Huang G Z, et al. Effects of nitrogen addition on tree root traits[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1735−1742.
    [8]
    祁金玉, 邓继峰, 尹大川, 等. 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响[J]. 生态学报, 2019, 39(8):2826−2832.

    Qi J Y, Deng J F, Yin D C, et al. Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings[J]. Acta Ecologica Sinica, 2019, 39(8): 2826−2832.
    [9]
    Liu M H, Sun J, Li Y, et al. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil[J]. Chemosphere, 2017, 167: 204−211. doi: 10.1016/j.chemosphere.2016.09.145
    [10]
    赵敏, 郝文颖, 宁心哲, 等. 红花尔基樟子松优良抗旱菌树组合的筛选[J]. 植物研究, 2020, 40(1):133−140.

    Zhao M, Hao W Y, Ning X Z, et al. Screening of excellent ectomycorrhizal fungi-tree for drought resistant with Pinus sylvestris var. mongolica[J]. Bulletin of Botanical Research, 2020, 40(1): 133−140.
    [11]
    Goodale C L. Multiyear fate of a 15N tracer in a mixed deciduous forest: retention, redistribution, and differences by mycorrhizal association[J]. Global Change Biology, 2017, 23(2): 867−880. doi: 10.1111/gcb.13483
    [12]
    Avis P G, Mueller G M, Lussenhop J. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition[J]. New Phytologist, 2008, 179(2): 472−483. doi: 10.1111/j.1469-8137.2008.02491.x
    [13]
    王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3):741−748.

    Wang K, Zhao C J, Zhang R S, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
    [14]
    蔚晓燕, 李静, 唐明. 施氮与接种外生菌根真菌对油松幼苗生物量和光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2013, 41(10):42−48,58.

    Wei X Y, Li J, Tang M. Effects of nitrogen application and inoculating ectomycorrhizal fungi on biomass and photosynthetic characteristics of Pinus tabulaeformis seedlings[J]. Journal of Northwest A&F University (Natural Science Edition), 2013, 41(10): 42−48,58.
    [15]
    Lin J X, Wang Y G, Sun S N, et al. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Science of the Total Environment, 2017, 576: 234−241. doi: 10.1016/j.scitotenv.2016.10.091
    [16]
    张中峰, 张金池, 黄玉清, 等. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响[J]. 生态学杂志, 2015, 34(5):1198−1204.

    Zhang Z F, Zhang J C, Huang Y Q, et al. Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings[J]. Chinese Journal of Ecology, 2015, 34(5): 1198−1204.
    [17]
    宋平, 张一, 张蕊, 等. 低磷胁迫下马尾松无性系磷效率性状对氮沉降的响应[J]. 植物营养与肥料学报, 2017, 23(2):502−511.

    Song P, Zhang Y, Zhang R, et al. Responses of phosphorus efficiency to simulated nitrogen deposition under phosphorus deficiency in Pinus massoniana clones[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 502−511.
    [18]
    吴斐. 氮及丛枝菌根真菌对欧美杨107生长的影响机制研究[D]. 咸阳: 西北农林科技大学, 2018.

    Wu P. Effects of nitrogen and arbuscular mycorrhizal fungi on the growth of Populus × Canadensis ‘NEVA’[D]. Xianyang: Northwest A&F University, 2018.
    [19]
    王如岩, 于水强, 张金池, 等. 干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(6):23−27.

    Wang R Y, Yu S Q, Zhang J C, et al. Effects of mycorrhizal fungus inoculation on the root of Cupressus duclouxiana and Catalpa bungei seedlings under drought stress[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(6): 23−27.
    [20]
    闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4):36−43.

    Yan G Y, Wang X C, Xing Y J, et al. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36−43.
    [21]
    陈冠陶, 郑军, 彭天驰, 等. 扁刺栲不同根序细根形态和化学特征及其对短期氮添加的响应[J]. 应用生态学报, 2017, 28(11):3461−3468.

    Chen G T, Zheng J, Peng T C, et al. Fine root morphology and chemistry characteristics in different branch orders of Castanopsis platyacantha and their responses to nitrogen addition[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3461−3468.
    [22]
    张蓓蓓, 张辉, 景琦, 等. 两种水分条件下真菌接种及氮肥施加对小麦生长、生理及氮磷吸收的影响[J]. 干旱地区农业研究, 2019, 37(1):214−220.

    Zhang B B, Zhang H, Jing Q, et al. Effect of mycorrhizal fungi inoculation and nitrogen fertilization on physiological characteristics, growth, and nitrogen and phosphorus uptake of wheat under two distinct water regimes[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 214−220.
    [23]
    王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016, 27(4):1294−1302.

    Wang W N, Wang Y, Wang S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: a review[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1294−1302.
    [24]
    Eissenstat D M, Kucharski J M, Zadworny M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees ina temperate forest[J]. New Phytologist, 2015, 208(1): 114−124. doi: 10.1111/nph.13451
    [25]
    王艺, 丁贵杰. 水分胁迫下外生菌根对马尾松幼苗养分吸收的影响[J]. 林业科学研究, 2013, 26(2):227−233.

    Wang Y, Ding G J. Influence of ectomycorrhiza on nutrient absorption of Pinus massoniana seedlings under water stress[J]. Forest Research, 2013, 26(2): 227−233.
    [26]
    吴强盛, 袁芳英, 费永俊, 等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响[J]. 草业学报, 2014, 23(1):199−204.

    Wu Q S, Yuan F Y, Fei Y J, et al. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover[J]. Acta Prataculturae Sinica, 2014, 23(1): 199−204.
    [27]
    陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展[J]. 生态学报, 2016, 36(17):5285−5297.

    Chen W L, Li J, Zhu H H, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms[J]. Acta Ecologica Sinica, 2016, 36(17): 5285−5297.
    [28]
    王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1):260−268.

    Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260−268.
    [29]
    赵青华, 孙立涛, 王玉, 等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J]. 植物生理学报, 2014, 50(2):164−170.

    Zhao Q H, Sun L T, Wang Y, et al. Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in Camellia sinensis (L.) O. Kuntze[J]. Plant Physiology Journal, 2014, 50(2): 164−170.
    [30]
    陈廷廷. 土壤增温和氮沉降对杉木幼苗细根解剖、形态特征和菌根侵染的影响[D]. 福州: 福建师范大学, 2018.

    Chen T T. Effects of soil warming and nitrogen deposition on fine root anatomical and morphological traits and arbuscular mycorrhizal colonization of Chinese fir seedlings[D]. Fuzhou: Fujian Normal University, 2018.
  • Cited by

    Periodical cited type(8)

    1. 陈志琪,张海娜,刘佳丽,鲁向晖,杨宝城. 氮添加对稀土尾砂地猴樟幼苗根系生长、生物量分配及非结构性碳水化合物的影响. 植物研究. 2024(01): 86-95 .
    2. 王志保,路兴慧,张演义,王宏骄,谢宪,江洪,韩婧雅,王艺合,梁晶. 氮磷添加对滨海新围垦区大叶女贞细根形态特征和生物量的影响. 广西植物. 2024(08): 1438-1447 .
    3. 孙薇,王斌,楚秀丽,王秀花,张东北,吴小林,周志春. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联. 南京林业大学学报(自然科学版). 2023(01): 226-233 .
    4. 吴莹. 生物炭和氮肥配施对榉树幼苗生长的影响. 绿色科技. 2023(05): 101-103+108 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 赵玉红. 樟子松种植技术要点. 中国林副特产. 2022(03): 59-61 .
    7. 高文礼 ,陈晓楠 ,伊力努尔·艾力 ,马晓东 . 干旱及复水条件下接种AMF和根瘤菌对疏叶骆驼刺根系生长的影响. 西北植物学报. 2022(07): 1189-1197 .
    8. 郝龙飞,小红,邵东华,刘婷岩,许吉康,张之月,于凡舒. 接种菌根真菌和氮添加处理对樟子松苗木根际微生态环境的影响. 西北林学院学报. 2022(05): 135-140+154 .

    Other cited types(7)

Catalog

    Article views (1383) PDF downloads (72) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return