Citation: | Tang Xixi, Ayup Mubarek, Zhang Ping, Gong Peng, Yu Qiuhong, Ablitip Yarmuhammad, Sayfudin Arxidin, Guo Chunmiao. Effects of drought stress on leaf structure and root morphology of almond rootstock seedlings[J]. Journal of Beijing Forestry University, 2023, 45(11): 90-99. DOI: 10.12171/j.1000-1522.20210263 |
Through a water controlled pot experiment, the leaf anatomical structure and root morphological characteristics of six different rootstock resources of almonds were studied in response to moderate soil drought stress with a period of 60 d. The aim was to screen out almond rootstock resources with strong drought resistance and provide drought resistant materials for the development and utilization of excellent drought resistant rootstock resources.
Using two local peach almond resources (SC64, SC28), three almond resources (SC30, SC3 and SC47) and peach as experimental materials, a total of related indicators were obtained through optical microscope observation and root scanning treatment, and biological statistical analysis was conducted.
Under moderate drought stress, structural indicators such as leaf thickness, upper epidermal cell thickness, mesophyll cell porosity, and specific leaf area (SLA) of SC3, SC47 and peach decreased to varying degrees (P < 0.05); meanwhile, drought stress promoted an increase in root to shoot ratio and root growth (P < 0.05). Through principal component analysis, five representative indicators were selected, including upper epidermal cell thickness, underground biomass, specific gravity of fine root biomass with a diameter greater than 0.5 mm, mesophyll cell compactness, and SLA value. The results of membership function indicated that their drought resistance ability was ordered as SC30 > SC47 > SC3 > SC28 > SC64 > peach.
The drought resistance of almond resources is stronger than that of peach almond and peach resources. Peach almond resources are at a moderate drought resistance level, while peach is the most sensitive to soil drought and has weaker drought resistance.
[1] |
Cattivelli L, Rizza F, Badeck F W, et al. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics[J]. Field Crops Research, 2008, 105(1−2): 1−14. doi: 10.1016/j.fcr.2007.07.004
|
[2] |
Gainza F, Opazo I, Guajardo V, et al. Rootstock breeding in Prunus species: ongoing efforts and new challenges[J]. Chilean Journal of Agricultural Research, 2015, 75(7): 6−16.
|
[3] |
Arzani K, Yadollahi A, Ebadi A, et al. The relationship between bitterness and drought resistance of almond ( Prunus dulcis Mill.)[J]. African Journal of Agricultural Research, 2010, 5(9): 861−866.
|
[4] |
Yadollahi A, Arzani K, Ebadi A, et al. The response of different almond genotypes to moderate and severe water stress in order to screen for drought tolerance[J]. Scientia Horticulturae, 2011, 129(3): 403−413. doi: 10.1016/j.scienta.2011.04.007
|
[5] |
刘飞, 王金花, 张洪毅, 等. 四种苹果砧木幼苗对锌胁迫的耐性差异[J]. 中国农业科学, 2012, 45(18): 3801−3811. doi: 10.3864/j.issn.0578-1752.2012.18.013
Liu F, Wang J H, Zhang H Y, et al. Differences in tolerance of four apple rootstock seedlings to zinc stress[J]. Scientia Agricultura Sinica, 2012, 45(18): 3801−3811. doi: 10.3864/j.issn.0578-1752.2012.18.013
|
[6] |
Marcinska I, Czyczyo M I, Skrzypek E, et al. Impact of osmotic stress on physiological and biochemical characteristics in rought-susceptible and drought-resistant wheat genotypes[J]. Acta Physiologiae Plantarum, 2013, 35(2): 451−461. doi: 10.1007/s11738-012-1088-6
|
[7] |
Tuberosa R, Salvo S. Genomics-based approaches to improve drought tolerance of crops[J]. Trends Plant Science, 2006, 11(8): 405−412. doi: 10.1016/j.tplants.2006.06.003
|
[8] |
Herralde F D, Biel C, Savé R. Leaf photosynthesis in eight almond tree cultivars[J]. Biologia Plantarum, 2003, 46(4): 557−561. doi: 10.1023/A:1024867612478
|
[9] |
Castel J R, Fereres E. Responses of young almond trees to two drought periods in the field[J]. Journal of Horticultural Science and Biotechnology, 1982, 57(2): 175−187. doi: 10.1080/00221589.1982.11515038
|
[10] |
Torrecillas A, Ruiz S M C, Leon A, et al. Stomatal response to leaf water potential in almond trees under drip irrigated and non irrigated conditions[J]. Plant and Soil, 1988, 112(1): 151−153. doi: 10.1007/BF02181765
|
[11] |
Torrecillas A, Domingo R, Planes J, et al. Strategies for drought resistance in leaves of two almond cultivars[J]. Plant Science, 1996, 118(2): 135−143. doi: 10.1016/0168-9452(96)04434-2
|
[12] |
Akbarpour E, Imani A, Yeganeh S F. Physiological and morphological responses of almond cultivars under in vitro drought stress[J]. Journal of Nuts, 2017, 8(1): 61−72.
|
[13] |
赵秀明, 王飞, 韩明玉, 等. 新引进苹果矮化砧木的叶片解剖结构及抗旱性[J]. 西北农林科技大学学报(自然科学版), 2012, 40(5): 136−142. doi: 10.13207/j.cnki.jnwafu.2012.05.031
Zhao X M, Wang F, Han M Y, et al. Relationship between leaf anatomical structures and drought resistance of newly introduced apple dwarf rootstocks[J]. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(5): 136−142. doi: 10.13207/j.cnki.jnwafu.2012.05.031
|
[14] |
王延秀, 贾旭梅, 石晓昀, 等. 三种苹果砧木应对干旱胁迫的超微及解剖结构响应特性[J]. 植物生理学报, 2018, 54(4): 594−606. doi: 10.13592/j.cnki.ppj.2017.0401
Wang Y X, Jia X M, Shi X Y, et al. The response characteristics of the ultrastructure and anatomical structure of three apple rootstocks under drought stress[J]. Acta Phytophysiology, 2018, 54(4): 594−606. doi: 10.13592/j.cnki.ppj.2017.0401
|
[15] |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响[J]. 草业学报, 2019, 28(5): 79−89. doi: 10.11686/cyxb2018314
Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa ( Medicago sativa) varieties with differing drought-tolerance[J]. Acta Prataculturae Sinica, 2019, 28(5): 79−89. doi: 10.11686/cyxb2018314
|
[16] |
田建保, 何勇, 称恩明. 中国扁桃[M]. 北京: 中国农业出版社, 2008.
Tian J B, He Y, Chen E M. Chinese almond[M]. Beijing: China Agriculture Press, 2008.
|
[17] |
Micke W C, Freeman M W, Beede R H, et al. Almond trees grown on peach rootstock initially more productive[J]. California Agriculture, 1996, 50(4): 29−31. doi: 10.3733/ca.v050n04p29
|
[18] |
郭改改, 封斌, 麻保林, 等. 不同区域长柄扁桃叶片解剖结构及其抗旱性分析[J]. 西北植物学报, 2013, 33(4): 720−728. doi: 10.3969/j.issn.1000-4025.2013.04.012
Guo G G, Feng B, Ma B L, et al. Leaf Anatomical structures of different regional Amygdalus pedunculata Pall. and their drought resistance analysis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(4): 720−728. doi: 10.3969/j.issn.1000-4025.2013.04.012
|
[19] |
Wang J, Zheng R, Bai S, et al. Mongolian almond ( Prunus mongolica Maxim): the morpho-physio-logical, biochemical and transcriptomic response to drought stress[J]. PLoS One, 2015, 10(4): e0124442. doi: 10.1371/journal.pone.0124442
|
[20] |
王丽娜, 克热木·伊力, 侯江涛. 水分胁迫对扁桃砧木叶片脯氨酸、可溶性蛋白质、质膜透性、相对含水量的影响[J]. 新疆农业大学学报, 2006, 29(3): 53−58. doi: 10.3969/j.issn.1007-8614.2006.03.014
Wang L N, Yili K R M, Hou J T. Effects of water stress on proline, soluble protein, membrane permeability, relative water content of almond rootstock[J]. Journal of Xinjiang Agricultural University, 2006, 29(3): 53−58. doi: 10.3969/j.issn.1007-8614.2006.03.014
|
[21] |
克热木·伊力, 王丽娜, 侯江涛. 水分胁迫对扁桃砧木干物质和叶绿素含量的影响[J]. 经济林研究, 2007, 25(4): 1−5. doi: 10.3969/j.issn.1003-8981.2007.04.001
Yili K R M, Wang L N, Hou J T. Effects of water stress on contents of dry matters and chlorophyll in almond rootstock[J]. Nonwood Forest Research, 2007, 25(4): 1−5. doi: 10.3969/j.issn.1003-8981.2007.04.001
|
[22] |
木巴热克·阿尤普, 艾沙江·买买提, 郭春苗, 等. 基于叶片显微及亚显微结构的新疆扁桃10个主栽品种抗旱性综合评价[J]. 果树学报, 2019, 36(3): 347−358. doi: 10.13925/j.cnki.gsxb.20180189
Ayup M B R K, Maimaiti A S J, Guo C M, et al. Comprehensive evaluation of drought resistance of 10 main cultivars of almond ( Amygdalus communis L.) in Xinjiang by means of leaf microstructure and ultrastructure[J]. Journal of Fruit Science, 2019, 36(3): 347−358. doi: 10.13925/j.cnki.gsxb.20180189
|
[23] |
李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J]. 生态学报, 2005, 25(2): 304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019
Li Y L, Cui J Y, Su Y Z. Specific leaf area and leaf dry matter content of some plants in different dune habitats[J]. Acta Ecologica Sinica, 2005, 25(2): 304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019
|
[24] |
黄海霞, 杨琦琦, 崔鹏, 等. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197−207. doi: 10.11686/cyxb2020057
Huang H X, Yang Q Q, Cui P, et al. Changes in morphological and physiological characteristics of Gymnocarpos przewalskii roots in response to water stress[J]. Acta Prataculturae Sinica, 2021, 30(1): 197−207. doi: 10.11686/cyxb2020057
|
[25] |
王斌, 王利民, 张建平, 等. 胡麻重组自交系群体苗期抗旱性的鉴定与评价[J]. 种子, 2021, 40(4): 65−69. doi: 10.16590/j.cnki.1001-4705.2021.04.065
Wang B, Wang L M, Zhang J P, et al. Drought-resistant identification and evaluation of recombinant inbred lines (RIL) of Linum usitatissimum at seedling stage[J]. Seed, 2021, 40(4): 65−69. doi: 10.16590/j.cnki.1001-4705.2021.04.065
|
[26] |
厉广辉, 万勇善, 刘风珍, 等. 不同抗旱性花生品种根系形态及生理特性[J]. 作物学报, 2014, 40(3): 531−541. doi: 10.3724/SP.J.1006.2014.00531
Li G H, Wan Y S, Liu F Z, et al. Morphological and physiological traits of root in different drought resistant peanut cultivars[J]. Acta Agronomica Sinica, 2014, 40(3): 531−541. doi: 10.3724/SP.J.1006.2014.00531
|
[27] |
刘红茹, 冯永忠, 王得祥, 等. 延安5种木犀科园林植物叶片结构及抗旱性研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(2): 75−81. doi: 10.13207/j.cnki.jnwafu.2013.02.029
Liu H R, Feng Y Z, Wang D X, et al. Drought resistances and leaf structures of five oleaceae ornamental plants in Yan’an[J]. Journal of Northwest A&F University (Natural Science Edition), 2013, 41(2): 75−81. doi: 10.13207/j.cnki.jnwafu.2013.02.029
|
[28] |
董晓民, 刘伟, 李桂祥, 等. 干旱胁迫下两个扁桃品种的叶片解剖结构分析[J]. 黑龙江农业科学, 2018(12): 54−57. doi: 10.11942/j.issn1002-2767.2018.12.0054
Dong X M, Liu W, Li G X, et al. Drought-resistance analysis of two almond species[J]. Heilongjiang Agricultural Sciences, 2018(12): 54−57. doi: 10.11942/j.issn1002-2767.2018.12.0054
|
[29] |
杨彪生, 单立山, 马静, 等. 红砂幼苗生长及根系形态特征对干旱−复水的响应[J]. 干旱区研究, 2021, 38(2): 469−478.
Yang B S, Shan L S, Ma J, et al. Response of growth and root morphological characteristics of Reaumuria soongorica seedlings to drought-rehydration[J]. Arid Zone Research, 2021, 38(2): 469−478.
|
[30] |
Shan L S, Zhang X M, Wang Y K, et al. Influence of moisture on the growth and biomass allocation in Haloxylon ammodendron and Tamaracks ramosissima seeding in the shelterbelt along the Tarim Desert Highway, Xinjiang, China[J]. Chinese Science Bulletin, 2008, 53(S2): 93−101.
|
[31] |
Fernández R J, Wang M B, Reynolds J F. Do morphological changes mediate plant responses to water stress Asteady-state experiment with two C4 grasses[J]. New Phytologist, 2002, 155(1): 79−88. doi: 10.1046/j.1469-8137.2002.00438.x
|
[32] |
He W M, Zhang X S. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China[J]. Journal of Arid Environments, 2003, 53(3): 307−316. doi: 10.1006/jare.2002.1051
|
[33] |
Parvaneh T, Afshari H, Ebadi A. A study of the influence of different rootstocks on the vegetative growth of almond cultivars[J]. African Journal of Biotechnology, 2011, 10(74): 16808−16812.
|
[34] |
Mark R, Duemmel M J. Comparison of drought resistance among Prunus species from divergent habitats[J]. Tree Physiology, 1992(4): 369−380.
|
[35] |
Karimi S. In vitro screening of almond ( Prunus dulcis (Mill.)) genotypes for drought tolerance[J]. Journal of Biological and Environmental Sciences, 2012, 6(18): 263−270.
|
[36] |
Reynolds H T, Anderson L D, Andres L A. Cultural and chemical control of the lesser cornstalk borer in Southern California[J]. Journal of Economic Entomology, 1959, 52(1): 63−66. doi: 10.1093/jee/52.1.63
|
[37] |
Ledbetter C A, Sisterson M S. Advanced generation peach-almond hybrids as seedling rootstocks for almond: first year growth and potential pollenizers for hybrid seed production[J]. Euphytica, 2008, 160(2): 259−266. doi: 10.1007/s10681-007-9569-1
|
[38] |
Ayup M B R K , Yang B, Gong P, et al. Evaluation of drought resistance of native almond-rootstock varieties in Xinjiang, China[J]. New Zealand Journal of Crop and Horticultural Science, 2022, 50(1): 48−68.
|
[1] | Ma Jiaxin, Sun Yujun, Zhu Zhaoting. Impact of two types of competition indices on the growth and biomass assessment of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230230 |
[2] | Li Hui, Liu Dongchao, Xu Ruirui, Hou Lina, Wang Tianqi, Liu Zhonghua, Fu Xiao, Li Shengbo. Development and identification of SSR markers based on RAD-seq of Lonicera japonica[J]. Journal of Beijing Forestry University, 2021, 43(6): 108-117. DOI: 10.12171/j.1000-1522.20200337 |
[3] | Liu Feng, Xi Benye, Dai Tengfei, Yu Jinglin, Li Guangde, Chen Yushan, Wang Jie, Jia Liming. Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa[J]. Journal of Beijing Forestry University, 2020, 42(1): 75-83. DOI: 10.12171/j.1000-1522.20190222 |
[4] | LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374 |
[5] | WANG Ling, ZHAO Guang-liang, HUANG Jin. Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars[J]. Journal of Beijing Forestry University, 2015, 37(8): 69-75. DOI: 10.13332/j.1000-1522.20150013 |
[6] | DONG Dian, LIN Tian-xi, TANG Jing-yi, LIU Jing-chen, SUN Guo-wen, YAO Jie, CHENG Yan-xia. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. DOI: 10.13332/j.cnki.jbfu.2014.04.013 |
[7] | DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22. |
[8] | CHU Xu, DI Xue-ying, YANG Guang. Impacts of forest fire on root biomass, carbon and nitrogen concentration of Larix gmelinii.[J]. Journal of Beijing Forestry University, 2013, 35(2): 10-16. |
[9] | XU Fei, GUO Wei-hua, XU Wei-hong, WANG Ren-qing. Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 24-30. |
[10] | ZHANG Guo-jun, ZHANG Guo-jun, LI Yun, LI Yun, LI Fang-ping, LI Fang-ping, XU Zhao-he, XU Zhao-he, SUN Yu-han, SUN Yu-han. Effects of root age on biomass and leaf nutrition in tetraploid Robinia pseudoacacia. [J]. Journal of Beijing Forestry University, 2009, 31(3): 37-41. |
1. |
黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 .
![]() | |
2. |
张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
![]() | |
3. |
吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
![]() | |
4. |
储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
![]() | |
5. |
宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
![]() | |
6. |
谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
![]() | |
7. |
常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
![]() | |
8. |
张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 .
![]() | |
9. |
王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 .
![]() | |
10. |
王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
![]() | |
11. |
贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
![]() | |
12. |
赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
![]() | |
13. |
赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
![]() | |
14. |
郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
![]() | |
15. |
徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
![]() | |
16. |
孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 .
![]() | |
17. |
孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
![]() | |
18. |
陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .
![]() |