• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guo Zhengqi, Zhang Xiaoli, Wang Yueting. Ability evaluation of coniferous forest aboveground biomass inversion using Sentinel-2A multiple characteristic variables[J]. Journal of Beijing Forestry University, 2020, 42(11): 27-38. DOI: 10.12171/j.1000-1522.20200097
Citation: Guo Zhengqi, Zhang Xiaoli, Wang Yueting. Ability evaluation of coniferous forest aboveground biomass inversion using Sentinel-2A multiple characteristic variables[J]. Journal of Beijing Forestry University, 2020, 42(11): 27-38. DOI: 10.12171/j.1000-1522.20200097

Ability evaluation of coniferous forest aboveground biomass inversion using Sentinel-2A multiple characteristic variables

More Information
  • Received Date: April 02, 2020
  • Revised Date: April 20, 2020
  • Available Online: October 13, 2020
  • Published Date: December 13, 2020
  •   Objective  Forest biomass is the key factor to measure forest carbon reserves. Therefore, accurate estimation of forest biomass is helpful for forest management and resource utilization. The data from Sentinel-2A provide new opportunities for biomass estimation and monitoring due to rich spectral information and high spatial resolution. In this paper, we evaluated the ability of various parameters to estimate aboveground biomass of coniferous forest , and completed regional-scale forest biomass estimation based on Sentinel-2A.
      Method  Selecting the coniferous forest of Wangyedian Forest Farm in Chifeng City, Inner Mongolia of northern China as the research object, this research extracted spectral reflectance, vegetation index and biophysical parameters in Sentinel-2A. Then we set up multiple stepwise regression equations by data types to estimate biomass. In addition, the elevation factor was added to improve the accuracy of model.
      Result  The results showed that: (1) the model built with multiple types of parameters had the highest accuracy, with R2 reaching 0.765 and RMSE was 39.49 t/ha; (2) among the models established by spectral reflectance, vegetation index and biophysical parameters, the accuracy based on the vegetation index was higher, indicating that the vegetation index had a greater impact on coniferous forest aboveground biomass estimation than the spectral reflectance and biophysical parameters; (3) for all the models of our research, elevation always improved accuracy.
      Conclusion  The retrieved aboveground biomass from Sentinel-2A spatial distribution is basically consistent with the actual situation, which shows that the coniferous forest aboveground biomass inversion is meaningful for regional forest resource monitoring.
  • [1]
    Hu X, Zhang L, Ye L, et al. Locating spatial variation in the association between road network and forest biomass carbon accumulation[J]. Ecological Indicators, 2017, 73: 214−223. doi: 10.1016/j.ecolind.2016.09.042.
    [2]
    Seedre M, Janda P, Trotsiuk V, et al. Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances[J/OL]. Forest Ecology and Management, 2020, 455 (2019−11−18) [2020−02−01]. https://doi.org/10.1016/j.foreco.2019.117676.
    [3]
    Drake J F, Swisdak M, Cattell C, et al. Formation of electron holes and particle energization during magnetic reconnection[J]. Science, 2003, 299(5608): 873−877. doi: 10.1126/science.1080333.
    [4]
    刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62−74. doi: 10.11834/jrs.20154108.

    Liu Q, Yang L, Liu Q H, et al. Summary of remote sensing inversion methods for forest aboveground biomass[J]. Journal of Remote Sensing, 2015, 19(1): 62−74. doi: 10.11834/jrs.20154108.
    [5]
    冯宗炜, 陈楚莹, 张家武, 等. 湖南会同地区马尾松林生物量的测定[J]. 林业科学, 1982(2):127−134.

    Feng Z W, Chen C Y, Zhang J W, et al. Biomass determination of Pinus massoniana forest in Huitong Area, Hunan[J]. Forestry Science, 1982(2): 127−134.
    [6]
    李德仁, 王长委, 胡月明, 等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报(信息科学版), 2012, 37(6):631−635.

    Li D R, Wang C W, Hu Y M, et al. Research advances in forest biomass estimation using remote sensing technology[J]. Journal of Wuhan University (Information Science Edition), 2012, 37(6): 631−635.
    [7]
    Dong J, Kaufmann R K, Myneni R B, et al. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks[J]. Remote Sensing of Environment, 2003, 84(3): 393−410. doi: 10.1016/S0034-4257(02)00130-X.
    [8]
    Kumar S, Khati U G, Chandola S, et al. Polarimetric SAR interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest[J]. Advances in Space Research, 2017, 60(3): 571−586. doi: 10.1016/j.asr.2017.04.018.
    [9]
    Ho T M, Le T T, Rocca F, et al. SAR tomography for the retrieval of forest biomass and height: cross-validation at two tropical forest sites in French Guiana[J]. Remote Sensing of Environment, 2016, 175: 138−147. doi: 10.1016/j.rse.2015.12.037.
    [10]
    王月婷. 基于多源遥感数据的森林蓄积量估算[D]. 北京: 北京林业大学, 2015.

    Wang Y T. Forest volume estimation based on multi-source remote sensing data[D]. Beijing: Beijing Forestry University, 2015.
    [11]
    Castillo M, Rivard B, Sánchez-Azofeifa A, et al. LIDAR remote sensing for secondary tropical dry forest identification[J]. Remote Sensing of Environment, 2012, 121: 132−143. doi: 10.1016/j.rse.2012.01.012.
    [12]
    Nelson R, Oderwald R, Gregoire T G. Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass[J]. Remote Sensing of Environment, 1997, 60(3): 311−326. doi: 10.1016/S0034-4257(96)00213-1.
    [13]
    田昕, 陈尔学, 李增元, 等. 基于多极化星载SAR数据的水稻/旱田识别——以江苏省海安县为例[J]. 遥感技术与应用, 2012, 27(3):406−412. doi: 10.11873/j.issn.1004-0323.2012.3.406.

    Tian X, Chen E X, Li Z Y, et al. Rice/dry field recognition based on multipolar spaceborne SAR data: a case study of Hai'an county, Jiangsu Province[J]. Remote Sensing Technology and Application, 2012, 27(3): 406−412. doi: 10.11873/j.issn.1004-0323.2012.3.406.
    [14]
    Israelsson H, Askne J, Sylvander R. Potential of SAR for forest bole volume estimation[J]. International Journal of Remote Sensing, 1994, 15(14): 2809−2826. doi: 10.1080/01431169408954286.
    [15]
    Sandberg G, Ulander L M H, Fransson J E S, et al. L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest[J]. Remote Sensing of Environment, 2011, 115(11): 2874−2886. doi: 10.1016/j.rse.2010.03.018.
    [16]
    冯琦, 陈尔学, 李增元, 等. 基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3):10−22.

    Feng Q, Chen E X, Li Z Y, et al. Estimation of aboveground biomass in complex terrain based on airborne P-band full-polarization SAR data[J]. Forestry Science, 2016, 52(3): 10−22.
    [17]
    谭炳香. 浅谈星载SAR的森林应用[J]. 遥感信息, 1995(3):40−41.

    Tan B X. The forest application of spaceborne SAR[J]. Remote Sensing Information, 1995(3): 40−41.
    [18]
    肖虹雁, 岳彩荣. 合成孔径雷达技术在林业中的应用综述[J]. 林业调查规划, 2014, 39(2):132−137. doi: 10.3969/j.issn.1671-3168.2014.02.029.

    Xiao H Y, Yue C R. Overview of the application of synthetic aperture radar technology in forestry[J]. Forestry Survey Planning, 2014, 39(2): 132−137. doi: 10.3969/j.issn.1671-3168.2014.02.029.
    [19]
    吴一戎, 朱敏慧. 合成孔径雷达技术的发展现状与趋势[J]. 遥感技术与应用, 2000(2):121−123. doi: 10.3969/j.issn.1004-0323.2000.02.012.

    Wu Y R, Zhu M H. Development status and trend of synthetic aperture radar technology[J]. Remote Sensing Technology and Application, 2000(2): 121−123. doi: 10.3969/j.issn.1004-0323.2000.02.012.
    [20]
    Næsset E, Gobakken T, Solberg S, et al. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area[J]. Remote Sensing of Environment, 2011, 115(12): 3599−3614. doi: 10.1016/j.rse.2011.08.021.
    [21]
    Zhao K, Popescu S, Nelson R. Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers[J]. Remote Sensing of Environment, 2009, 113(1): 182−196. doi: 10.1016/j.rse.2008.09.009
    [22]
    邹永林. 归并排序的概念与算法设计[J]. 现代计算机(专业版), 2015(20):48−51.

    Zou Y L. Concept and algorithm design of merge sort[J]. Modern Computer (Professional Edition), 2015(20): 48−51.
    [23]
    Muukkonen P, Heiskanen J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data[J]. Remote Sensing of Environment, 2005, 99(4): 434−447. doi: 10.1016/j.rse.2005.09.011.
    [24]
    田颖, 陈卓奇, 惠凤鸣, 等. 欧空局哨兵卫星Sentinel-2A/B数据特征及应用前景分析[J]. 北京师范大学学报(自然科学版), 2019, 55(1):57−65.

    Tian Y, Chen Z Q, Hui F M, et al. Data characteristics and application prospect analysis of ESA sentinel satellite Sentinel-2A/B[J]. Journal of Beijing Normal University (Natural Science Edition), 2019, 55(1): 57−65.
    [25]
    安海波, 李斐, 赵萌莉, 等. 基于优化光谱指数的牧草生物量估算[J]. 光谱学与光谱分析, 2015, 35(11):3155−3160.

    An H B, Li F, Zhao M L, et al. Forage biomass estimation based on optimized spectral index[J]. Spectroscopy and Spectral Analysis, 2015, 35(11): 3155−3160.
    [26]
    郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报, 2017, 21(2):318−328. doi: 10.11834/jrs.20176269.

    Zheng Y, Wu B F, Zhang M. Aboveground dry biomass estimation and evaluation of winter wheat based on Sentinel-2 data[J]. Journal of Remote Sensing, 2017, 21(2): 318−328. doi: 10.11834/jrs.20176269.
    [27]
    曹霖, 彭道黎, 王雪军, 等. 应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算[J]. 东北林业大学学报, 2018, 46(9):54−58. doi: 10.3969/j.issn.1000-5382.2018.09.012.

    Cao L, Peng D L, Wang X J, et al. Forest volume estimation using Sentinel-2A satellite spectrum and texture information[J]. Journal of Northeast Forestry University, 2018, 46(9): 54−58. doi: 10.3969/j.issn.1000-5382.2018.09.012.
    [28]
    Pandit S, Tsuyuki S, Dube T. Estimating above-ground biomass in sub-tropical buffer zone community forests, nepal, using sentinel 2 data[J]. Remote Sensing, 2018, 10(4): 601. doi: 10.3390/rs10040601.
    [29]
    陈瑜云. 基于Sentinel-2影像数据的毛竹林生物量估测[D]. 杭州: 浙江农林大学, 2019.

    Chen Y Y. Biomass estimation of Phyllostachys pubescens forest based on Sentinel-2 image data[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2019.
    [30]
    Immitzer M, Vuolo F, Atzberger C. First experience with Sentinel-2 data for crop and tree species classifications in Central Europe[J]. Remote Sensing, 2016, 8(3): 166. doi: 10.3390/rs8030166.
    [31]
    毕恺艺, 牛铮, 黄妮, 等. 基于Sentinel-2A时序数据和面向对象决策树方法的植被识别[J]. 地理与地理信息科学, 2017, 33(5):16−20. doi: 10.3969/j.issn.1672-0504.2017.05.003.

    Bi K Y, Niu Z, Huang N, et al. Vegetation recognition based on Sentinel-2A time series data and object-oriented decision tree method[J]. Geography and Geographic Information Science, 2017, 33(5): 16−20. doi: 10.3969/j.issn.1672-0504.2017.05.003.
    [32]
    杨斌, 李丹, 王磊, 等. 基于Sentinel-2A岷江上游地表生物量反演与植被特征分析[J]. 科技导报, 2017, 35(21):74−80.

    Yang B, Li D, Wang L, et al. Analysis of surface biomass inversion and vegetation characteristics based on Sentinel-2A upper Minjiang River[J]. Science & Technology Review, 2017, 35(21): 74−80.
    [33]
    李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.

    Li H K, Lei Y C. Assessment of biomass and carbon storage of forest vegetation in China[M]. Beijing: China Forestry Publishing House, 2010.
    [34]
    Wang M, Sun R, Xiao Z. Estimation of forest canopy height and aboveground biomass from spaceborne LiDAR and Landsat Imageries in Maryland[J]. Remote Sensing, 2018, 10(2): 344. doi: 10.3390/rs10020344.
    [35]
    Chiang S H, Valdez M, Chen C F. Forest tree species distribution mapping using Landsat satellite imagery and topographic variables with the maximum entropy method in Mongolia[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B8: 593−596. doi: 10.5194/isprsarchives-XLI-B8-593-2016.
    [36]
    Dorren L K A, Maier B, Seijmonsbergen A C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification[J]. Forest Ecology and Management, 2003, 183(1): 31−46.
    [37]
    Liu Y, Gong W, Hu X, et al. Forest type identification with Random Forest using Sentinel-1A, Sentinel-2A, multi-temporal Landsat-8 and DEM data[J]. Remote Sensing, 2018, 10(6): 946. doi: 10.3390/rs10060946.
  • Cited by

    Periodical cited type(9)

    1. 辛守英,王晓红,焦琳琳. 基于遥感数据和优化Blending算法的人工林地上生物量估算研究. 西北林学院学报. 2025(02): 207-219 .
    2. 郝君,吕康婷,胡天祺,王云阁,徐刚. 基于机器学习的红树林生物量遥感反演研究. 林草资源研究. 2024(01): 65-72 .
    3. 李敏,陈利,李静泰,闫丹丹,刘垚,吴翠玲,栾兆擎. 基于Sentinel-2数据的互花米草地上生物量反演. 海洋环境科学. 2024(03): 386-397 .
    4. 廖易,张加龙,鲍瑞,许冬凡. 基于Landsat的高山松地上生物量动态变化估测模型构建. 西南林业大学学报(自然科学). 2023(01): 117-125 .
    5. 郭芮,伏帅,侯蒙京,刘洁,苗春丽,孟新月,冯琦胜,贺金生,钱大文,梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究. 草业学报. 2023(04): 15-29 .
    6. 廖易,张加龙,鲍瑞,许冬凡,王书贤,韩冬阳. 引入地形因子的高山松地上生物量动态估测. 生态学杂志. 2023(05): 1243-1252 .
    7. 王熙媛,张王菲,李云,杨仙保. 依据光学遥感特征优选的森林地上生物量反演. 东北林业大学学报. 2022(04): 47-54 .
    8. 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 .
    9. 陈小芳,李军,李新伟,周毅. 基于高光谱的水稻生物量估测模型研究. 安徽科技学院学报. 2021(05): 53-59 .

    Other cited types(11)

Catalog

    Article views (2299) PDF downloads (125) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return