Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
Citation: Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133

Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects

More Information
  • Received Date: May 04, 2020
  • Revised Date: July 06, 2020
  • Available Online: September 23, 2020
  • Published Date: October 24, 2020
  •   Objective   This paper aims to establish an age group-individual tree two-level primary branch diameter model for Larix olgensis using the nonlinear mixed effect model approach, and provide theoretical basis for the research on the characteristics and differences of branch diameter growth in different age groups.
      Method   Out of four improved basic models, one was selected as the basic model after referring to the adjusting coefficient (R2adj) and root mean square error (RMSE). Nonlinear mixed-effect model of the branch diameter was constructed based on the selected model. Independent data were used to verify the model fitting results, while mean absolute error (MAE) and mean relative absolute error (MRAE) were used to evaluate the model prediction ability. The prediction values of the basic model and the mixed model were compared. Simulation of the branch diameter distribution in each age group was done using the random parameters from age group level.
      Result   Based on the improved Gompertz equation, the model performed the best when the age group random effects acted on parameter b, the individual tree random effects acted on parameters b, c and d at the same time, the variance-covariance structure of the random effects was generalized positive definite matrix, and the heteroscedasticity structure was power function. The adjustment coefficient (R2adj) of the mixed model was improved, and RMSE, MAE and MRAE were all significantly reduced. The values of the adjustment coefficient, RMSE, MAE and MRAE of the final model were 0.699 8, 4.768 4 mm, 3.705 8 mm and 0.391 6 mm, respectively. The predicted values of the mixed model reflected the differences between individual trees. The distribution range of branch diameter was found increasing with the increase of age groups, and the branch diameter growth showed difference between the age groups.
      Conclusion   The accuracy of the mixed effect model of branch diameter can be improved by incorporating the random effects of age groups and individual trees into the model. Simulation of the branch diameter growth using the random effect parameters in the age group level can reasonably reflect their growth patterns and differences, and also conform to the significance of the tree physiology. Therefore, the mixed effect model based on age group and individual tree level can reasonably predict the growth of primary branch diameter of Larix olgensis at different ages.
  • [1]
    Brown P L, Doley D, Keenan R J. Stem and crown dimensions as predictors of thinning responses in a crowded tropical rainforest plantation of Flindersia brayleyana F. Muell[J]. Forest Ecology and Management, 2004, 196(2): 379−392.
    [2]
    Maguire D A, Kershaw J A, Hann D W. Predicting the effects of silvicultural regime on branch size and crown wood core in Douglas-fir[J]. Forest Science, 1991, 37(5): 1409−1428.
    [3]
    王小青, 刘杏娥, 任海青. 树冠特征对小黑杨木材性质和生长量的影响研究[J]. 林业科学研究, 2007, 20(6):801−806. doi: 10.3321/j.issn:1001-1498.2007.06.011.

    Wang X Q, Liu X E, Ren H Q. Effects of crown attributes on wood characteristics and increments of Populus × xiaohei[J]. Forest Research, 2007, 20(6): 801−806. doi: 10.3321/j.issn:1001-1498.2007.06.011.
    [4]
    Groot A, Schneider R. Predicting maximum branch diameter from crown dimensions, stand characteristics and tree species[J]. Forestry Chronicle, 2011, 87(4): 542−551.
    [5]
    孙晓, 李春友, 贺红月, 等. ‘107杨’一级枝条基径和长度的动态模拟研究[J]. 林业与生态科学, 2018, 33(4):364−372.

    Sun X, Li C Y, He H Y, et al. Dynamic simulation of length and diameter of first branches of ‘107 poplar’[J]. Forestry and Ecological Sciences, 2018, 33(4): 364−372.
    [6]
    李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. doi: 10.11707/j.1001-7488.20120311.

    Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311.
    [7]
    Yang Y, Huang S. Allometric modelling of crown width for white spruce by fixed- and mixed-effects models[J]. The Forestry Chronicle, 2017, 93(2): 138−147.
    [8]
    朱万才, 贾炜玮. 基于随机效应的红松人工林一级枝条动态生长模型[J]. 森林工程, 2015, 31(4):26−32. doi: 10.3969/j.issn.1001-005X.2015.04.007.

    Zhu W C, Jia W W. Dynamic growth model for First-hierarchy branch of Korean pine plantation based on mixed effect model[J]. Forest Engineering, 2015, 31(4): 26−32. doi: 10.3969/j.issn.1001-005X.2015.04.007.
    [9]
    姜立春, 李凤日, 张锐. 基于线性混合模型的落叶松枝条基径模型[J]. 林业科学研究, 2012, 25(4):464−469. doi: 10.3969/j.issn.1001-1498.2012.04.009.

    Jiang L C, Li F R, Zhang R. Modeling branch diameter with linear mixed effects for Dahurian larch[J]. Forest Research, 2012, 25(4): 464−469. doi: 10.3969/j.issn.1001-1498.2012.04.009.
    [10]
    Chun-Sheng W, Cheng T, Sebastian H, et al. Branch development of five-year-old Betula alnoides plantations in response to planting density[J/OL]. Forests, 2018, 9(1): 42 [2019−11−12]. https://doi.org/10.3390/f9010042.
    [11]
    Weiskittel A R, Maguire D A, Monserud R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth[J]. Forest Ecology and Management, 2007, 251(3): 182−194.
    [12]
    姜立春, 潘莹, 李耀翔. 兴安落叶松枝条特征联立方程组模型及树冠形状模拟[J]. 北京林业大学学报, 2016, 38(6):1−7.

    Jiang L C, Pan Y, Li Y X. Model systems of branch characteristics and crown profile simulation for Larix gmelinii[J]. Journal of Beijing Forestry University, 2016, 38(6): 1−7.
    [13]
    陈东升, 孙晓梅, 李凤日. 落叶松人工林枝条直径和长度的非线性混合模型[J]. 南京林业大学学报(自然科学版), 2015, 39(6):74−80.

    Chen D S, Sun X M, Li F R. Nonlinear mixed models of branch diameter and length in larch plantation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6): 74−80.
    [14]
    Lemay A, Pamerleau-Couture É, Krause C. Maximum branch diameter in black spruce following partial cutting and clearcutting[J/OL]. Forests 2019, 10(10): 913 [2020−01−03]. https://www.mdpi.com/1999-4907/10/10/913.
    [15]
    Jia W, Chen D. Nonlinear mixed-effects height to crown base and crown length dynamic models using the branch mortality technique for a Korean larch (Larix olgensis) plantations in northeast China[J]. Journal of Forestry Research, 2019, 30(6): 2095−2109.
    [16]
    贾炜玮, 孙守强, 李凤日, 等. 基于混合模型的红松人工林枝条动态研究[J]. 植物研究, 2015, 35(3):425−430. doi: 10.7525/j.issn.1673-5102.2015.03.016.

    Jia W W, Sun S Q, Li F R, et al. Branch dynamics for the Korean pine plantation based on linear mixed model[J]. Bulletin of Botanical Research, 2015, 35(3): 425−430. doi: 10.7525/j.issn.1673-5102.2015.03.016.
    [17]
    王春红, 李凤日, 贾炜玮, 等. 基于非线性混合模型的红松人工林枝条生长[J]. 应用生态学报, 2013, 24(7):1945−1952.

    Wang C H, Li F R, Jia W W, et al. Branch growth of Korean pine plantation based on nonlinear mixed model[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1945−1952.
    [18]
    Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220.
    [19]
    高慧淋, 董利虎, 李凤日. 基于混合效应的人工落叶松树冠轮廓模型[J]. 林业科学, 2017, 53(3):84−93. doi: 10.11707/j.1001-7488.20170310.

    Gao H L, Dong L H, Li F R. Crown shape model for Larix olgensis plantation based on mixed effect[J]. Forest Research, 2017, 53(3): 84−93. doi: 10.11707/j.1001-7488.20170310.
    [20]
    Fu L, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. Forest Ecology and Management, 2013, 302: 210−220.
    [21]
    罗恒春, 张超, 魏安超, 等. 云南松林分平均高生长模型及模型参数环境解释[J]. 北京林业大学学报, 2018, 40(4):67−75.

    Luo H C, Zhang C, Wei A C, et al. Stand average height growth model and environmental interpretation in model parameter of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2018, 40(4): 67−75.
    [22]
    洪奕丰, 陈东升, 申佳朋, 等. 长白落叶松人工林单木和林分水平的相容性生物量模型研究[J]. 林业科学研究, 2019, 32(4):33−40.

    Hong Y F, Chen D S, Shen J P, et al. Compatible biomass models forLarix olgensis plantation based on tree-level and stand-level[J]. Forest Research, 2019, 32(4): 33−40.
    [23]
    罗恒春, 张超, 魏安超, 等. 云南松林分平均胸径生长模型及模型参数环境解释[J]. 浙江农林大学学报, 2018, 35(6):1079−1087. doi: 10.11833/j.issn.2095-0756.2018.06.011.

    Luo H C, Zhang C, Wei A C, et al. Average DBH growth model of a stand with environmental parameters for Pinus yunnanensis in central Yunnan, China[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1079−1087. doi: 10.11833/j.issn.2095-0756.2018.06.011.
    [24]
    Huff S, Poudel K P, Ritchie M, et al. Quantifying aboveground biomass for common shrubs in northeastern California using nonlinear mixed effect models[J]. Forest Ecology and Management, 2018, 424: 154−163.
    [25]
    姜立春, 张锐, 李凤日. 基于线性混合模型的落叶松枝条长度和角度模型[J]. 林业科学, 2012, 48(5):53−60. doi: 10.11707/j.1001-7488.20120508.

    Jiang L C, Zhang R, Li F R. Modeling branch length and branch angle with linear mixed effects for Dahurian larch[J]. Scientia Silvae Sinicae, 2012, 48(5): 53−60. doi: 10.11707/j.1001-7488.20120508.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Wang Baoying, Liang Ruiting, Xie Yunhong, Qiu Siyu, Sun Yujun. Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect[J]. Journal of Beijing Forestry University, 2023, 45(11): 33-41. DOI: 10.12171/j.1000-1522.20220496
    [4]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [5]Jia Weiwei, Luo Tianze, Li Fengri. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. Journal of Beijing Forestry University, 2021, 43(2): 10-21. DOI: 10.12171/j.1000-1522.20200057
    [6]WANG Man-lin, DONG Li-hu, LI Feng-ri. First-order branch number simulation for Larix olgensis plantation through Poisson regression mixed effect model[J]. Journal of Beijing Forestry University, 2017, 39(11): 45-55. DOI: 10.13332/j.1000-1522.20170204
    [7]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [8]LI Yao-xiang, JIANG Li-chun. Modeling wood tracheid length based on nonlinear mixed model for dahurian larch[J]. Journal of Beijing Forestry University, 2013, 35(3): 18-23.
    [9]LI Chun-ming, LI Li-xue. Height-diameter relationship for Quercus variabilisBlume plantations based on nonlinear mixed model.[J]. Journal of Beijing Forestry University, 2009, 31(4): 7-12.
    [10]LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49.
  • Cited by

    Periodical cited type(6)

    1. 李玉萌,贾炜玮,郭昊天. 人工红松松籽和松仁的产量模型. 应用生态学报. 2025(01): 95-103 .
    2. 贾炜玮,范敏,陈东升,孙丽娟,王鹤智,晁碧霄. 日本落叶松枝条属性特征对气候变量的响应. 应用生态学报. 2024(06): 1509-1517 .
    3. 卢腾飞,秦燕,徐婷婷,郎晓雪,袁启慧,孙玲琳,施凯泽. 基于混合效应模型的滇中地区云南松林地上生物量遥感模型研究. 西北林学院学报. 2024(04): 138-146 .
    4. 王建军,陈科屹,何友均,吕延杰,许单云,何亚婷,谢和生,卢佶. 兴安落叶松天然林3个主要树种单木断面积生长模型. 中南林业科技大学学报. 2024(09): 1-10 .
    5. 郑玉,张化永,邹恒超,黄头生,白卓青,甄欣欣. 应用非线性混合模型建立白桦枝长与枝径关系. 东北林业大学学报. 2023(09): 53-58+119 .
    6. 韩东阳,张加龙,杨健,王书贤,冯亚飞. 考虑地形效应的高山松地上生物量遥感估测模型构建. 中南林业科技大学学报. 2022(04): 12-21+67 .

    Other cited types(4)

Catalog

    Article views (1727) PDF downloads (114) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return