Citation: | Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133 |
[1] |
Brown P L, Doley D, Keenan R J. Stem and crown dimensions as predictors of thinning responses in a crowded tropical rainforest plantation of Flindersia brayleyana F. Muell[J]. Forest Ecology and Management, 2004, 196(2): 379−392.
|
[2] |
Maguire D A, Kershaw J A, Hann D W. Predicting the effects of silvicultural regime on branch size and crown wood core in Douglas-fir[J]. Forest Science, 1991, 37(5): 1409−1428.
|
[3] |
王小青, 刘杏娥, 任海青. 树冠特征对小黑杨木材性质和生长量的影响研究[J]. 林业科学研究, 2007, 20(6):801−806. doi: 10.3321/j.issn:1001-1498.2007.06.011.
Wang X Q, Liu X E, Ren H Q. Effects of crown attributes on wood characteristics and increments of Populus × xiaohei[J]. Forest Research, 2007, 20(6): 801−806. doi: 10.3321/j.issn:1001-1498.2007.06.011.
|
[4] |
Groot A, Schneider R. Predicting maximum branch diameter from crown dimensions, stand characteristics and tree species[J]. Forestry Chronicle, 2011, 87(4): 542−551.
|
[5] |
孙晓, 李春友, 贺红月, 等. ‘107杨’一级枝条基径和长度的动态模拟研究[J]. 林业与生态科学, 2018, 33(4):364−372.
Sun X, Li C Y, He H Y, et al. Dynamic simulation of length and diameter of first branches of ‘107 poplar’[J]. Forestry and Ecological Sciences, 2018, 33(4): 364−372.
|
[6] |
李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. doi: 10.11707/j.1001-7488.20120311.
Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311.
|
[7] |
Yang Y, Huang S. Allometric modelling of crown width for white spruce by fixed- and mixed-effects models[J]. The Forestry Chronicle, 2017, 93(2): 138−147.
|
[8] |
朱万才, 贾炜玮. 基于随机效应的红松人工林一级枝条动态生长模型[J]. 森林工程, 2015, 31(4):26−32. doi: 10.3969/j.issn.1001-005X.2015.04.007.
Zhu W C, Jia W W. Dynamic growth model for First-hierarchy branch of Korean pine plantation based on mixed effect model[J]. Forest Engineering, 2015, 31(4): 26−32. doi: 10.3969/j.issn.1001-005X.2015.04.007.
|
[9] |
姜立春, 李凤日, 张锐. 基于线性混合模型的落叶松枝条基径模型[J]. 林业科学研究, 2012, 25(4):464−469. doi: 10.3969/j.issn.1001-1498.2012.04.009.
Jiang L C, Li F R, Zhang R. Modeling branch diameter with linear mixed effects for Dahurian larch[J]. Forest Research, 2012, 25(4): 464−469. doi: 10.3969/j.issn.1001-1498.2012.04.009.
|
[10] |
Chun-Sheng W, Cheng T, Sebastian H, et al. Branch development of five-year-old Betula alnoides plantations in response to planting density[J/OL]. Forests, 2018, 9(1): 42 [2019−11−12]. https://doi.org/10.3390/f9010042.
|
[11] |
Weiskittel A R, Maguire D A, Monserud R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth[J]. Forest Ecology and Management, 2007, 251(3): 182−194.
|
[12] |
姜立春, 潘莹, 李耀翔. 兴安落叶松枝条特征联立方程组模型及树冠形状模拟[J]. 北京林业大学学报, 2016, 38(6):1−7.
Jiang L C, Pan Y, Li Y X. Model systems of branch characteristics and crown profile simulation for Larix gmelinii[J]. Journal of Beijing Forestry University, 2016, 38(6): 1−7.
|
[13] |
陈东升, 孙晓梅, 李凤日. 落叶松人工林枝条直径和长度的非线性混合模型[J]. 南京林业大学学报(自然科学版), 2015, 39(6):74−80.
Chen D S, Sun X M, Li F R. Nonlinear mixed models of branch diameter and length in larch plantation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6): 74−80.
|
[14] |
Lemay A, Pamerleau-Couture É, Krause C. Maximum branch diameter in black spruce following partial cutting and clearcutting[J/OL]. Forests 2019, 10(10): 913 [2020−01−03]. https://www.mdpi.com/1999-4907/10/10/913.
|
[15] |
Jia W, Chen D. Nonlinear mixed-effects height to crown base and crown length dynamic models using the branch mortality technique for a Korean larch (Larix olgensis) plantations in northeast China[J]. Journal of Forestry Research, 2019, 30(6): 2095−2109.
|
[16] |
贾炜玮, 孙守强, 李凤日, 等. 基于混合模型的红松人工林枝条动态研究[J]. 植物研究, 2015, 35(3):425−430. doi: 10.7525/j.issn.1673-5102.2015.03.016.
Jia W W, Sun S Q, Li F R, et al. Branch dynamics for the Korean pine plantation based on linear mixed model[J]. Bulletin of Botanical Research, 2015, 35(3): 425−430. doi: 10.7525/j.issn.1673-5102.2015.03.016.
|
[17] |
王春红, 李凤日, 贾炜玮, 等. 基于非线性混合模型的红松人工林枝条生长[J]. 应用生态学报, 2013, 24(7):1945−1952.
Wang C H, Li F R, Jia W W, et al. Branch growth of Korean pine plantation based on nonlinear mixed model[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1945−1952.
|
[18] |
Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220.
|
[19] |
高慧淋, 董利虎, 李凤日. 基于混合效应的人工落叶松树冠轮廓模型[J]. 林业科学, 2017, 53(3):84−93. doi: 10.11707/j.1001-7488.20170310.
Gao H L, Dong L H, Li F R. Crown shape model for Larix olgensis plantation based on mixed effect[J]. Forest Research, 2017, 53(3): 84−93. doi: 10.11707/j.1001-7488.20170310.
|
[20] |
Fu L, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. Forest Ecology and Management, 2013, 302: 210−220.
|
[21] |
罗恒春, 张超, 魏安超, 等. 云南松林分平均高生长模型及模型参数环境解释[J]. 北京林业大学学报, 2018, 40(4):67−75.
Luo H C, Zhang C, Wei A C, et al. Stand average height growth model and environmental interpretation in model parameter of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2018, 40(4): 67−75.
|
[22] |
洪奕丰, 陈东升, 申佳朋, 等. 长白落叶松人工林单木和林分水平的相容性生物量模型研究[J]. 林业科学研究, 2019, 32(4):33−40.
Hong Y F, Chen D S, Shen J P, et al. Compatible biomass models forLarix olgensis plantation based on tree-level and stand-level[J]. Forest Research, 2019, 32(4): 33−40.
|
[23] |
罗恒春, 张超, 魏安超, 等. 云南松林分平均胸径生长模型及模型参数环境解释[J]. 浙江农林大学学报, 2018, 35(6):1079−1087. doi: 10.11833/j.issn.2095-0756.2018.06.011.
Luo H C, Zhang C, Wei A C, et al. Average DBH growth model of a stand with environmental parameters for Pinus yunnanensis in central Yunnan, China[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1079−1087. doi: 10.11833/j.issn.2095-0756.2018.06.011.
|
[24] |
Huff S, Poudel K P, Ritchie M, et al. Quantifying aboveground biomass for common shrubs in northeastern California using nonlinear mixed effect models[J]. Forest Ecology and Management, 2018, 424: 154−163.
|
[25] |
姜立春, 张锐, 李凤日. 基于线性混合模型的落叶松枝条长度和角度模型[J]. 林业科学, 2012, 48(5):53−60. doi: 10.11707/j.1001-7488.20120508.
Jiang L C, Zhang R, Li F R. Modeling branch length and branch angle with linear mixed effects for Dahurian larch[J]. Scientia Silvae Sinicae, 2012, 48(5): 53−60. doi: 10.11707/j.1001-7488.20120508.
|
[1] | Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063 |
[2] | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
[3] | Wang Baoying, Liang Ruiting, Xie Yunhong, Qiu Siyu, Sun Yujun. Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect[J]. Journal of Beijing Forestry University, 2023, 45(11): 33-41. DOI: 10.12171/j.1000-1522.20220496 |
[4] | Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052 |
[5] | Jia Weiwei, Luo Tianze, Li Fengri. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. Journal of Beijing Forestry University, 2021, 43(2): 10-21. DOI: 10.12171/j.1000-1522.20200057 |
[6] | WANG Man-lin, DONG Li-hu, LI Feng-ri. First-order branch number simulation for Larix olgensis plantation through Poisson regression mixed effect model[J]. Journal of Beijing Forestry University, 2017, 39(11): 45-55. DOI: 10.13332/j.1000-1522.20170204 |
[7] | ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008 |
[8] | LI Yao-xiang, JIANG Li-chun. Modeling wood tracheid length based on nonlinear mixed model for dahurian larch[J]. Journal of Beijing Forestry University, 2013, 35(3): 18-23. |
[9] | LI Chun-ming, LI Li-xue. Height-diameter relationship for Quercus variabilisBlume plantations based on nonlinear mixed model.[J]. Journal of Beijing Forestry University, 2009, 31(4): 7-12. |
[10] | LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49. |
1. |
罗也,王君,杨雨春,何怀江,刘婷. 东北胡桃楸次生林生长随林龄和林分密度的变化规律. 北京林业大学学报. 2024(06): 10-19 .
![]() | |
2. |
李玉凤,郭飞,莫燕华,秦佳双,马姜明. 两种密度马尾松人工林生态系统碳储量及其分配特征. 广西林业科学. 2024(05): 577-584 .
![]() | |
3. |
曹欣媛,袁丛军,王浩东,陈梦,李君一,单绍朋,姜克,张家才. 乌蒙山不同龄组华山松林乔木层碳密度及固碳释氧能力. 贵州林业科技. 2023(01): 32-38+31 .
![]() | |
4. |
冯宜明,吕春燕,王零,赵维俊,马雪娥,杜军林,何俊龄. 不同林分密度青海云杉林碳氮储量及其分配格局. 干旱区地理. 2023(07): 1133-1144 .
![]() | |
5. |
代林利,周丽丽,伍丽华,刘丽,黄樱,彭婷婷,邱静雯,何宗明,曹光球. 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征. 生态学报. 2022(02): 710-719 .
![]() | |
6. |
郑颖,冯健,于世河,卜鹏图,王月婵,黄夏,郑璐. 辽东山区不同密度落叶松人工幼龄林林木生长和土壤养分特性. 中南林业科技大学学报. 2022(01): 94-103 .
![]() | |
7. |
刘延坤,李云红,陈瑶,刘玉龙,田松岩. 坡位对不同密度长白落叶松人工林生态系统碳储量的影响. 贵州农业科学. 2022(07): 133-140 .
![]() | |
8. |
董灵波,陈冠谋,蔺雪莹,刘兆刚. 基于CO_2FIX模型的长白落叶松人工林碳汇和木材生产模拟. 应用生态学报. 2022(10): 2653-2662 .
![]() | |
9. |
刘海英,王增,徐耀文,葛晓改,周本智,蒋仲龙. 不同林分密度毛竹林生态系统碳储量特征. 中国农学通报. 2022(35): 17-21 .
![]() | |
10. |
赖敏英,肖集泓,李媚,王春晓,邓传远. 平潭岛植物群落乔木层碳储量及影响因素研究. 山东林业科技. 2022(06): 19-26 .
![]() | |
11. |
李玉凤,李妹珍,马姜明,宋尊荣,莫燕华,杨章旗,陆绍浩. 林分密度对马尾松人工林土壤碳储量及其分配特征的影响. 广西林业科学. 2021(01): 54-59 .
![]() | |
12. |
朱万才,吴瑶,李亚洲,张怡春. 不同保留密度对落叶松水曲柳混交林的影响. 森林工程. 2021(02): 50-56+94 .
![]() | |
13. |
杜满义,封焕英,裴顺祥,张连金,法蕾,郭嘉,辛学兵. 晋南不同密度油松人工林土壤水分的物理特性. 东北林业大学学报. 2021(09): 72-76 .
![]() | |
14. |
吴敏,陈瑞,李贵,刘振华,童琪,童方平. 武陵石漠化山地林分有机碳密度分布特征研究. 湖南林业科技. 2021(06): 9-15 .
![]() | |
15. |
马学发,卫月华,梁凤和,孙志虎,王庆成,龚丽芳,左肖罗,王梦阳. 不同造林密度水曲柳人工林大径材培育首次间伐临界胸径的确定. 东北林业大学学报. 2020(08): 1-5 .
![]() | |
16. |
张海东,季蒙,王志波,卜玉强,李银祥,伊敏,于楠楠,田稼穑,刘佳. 苏木山不同林分密度华北落叶松人工林枯落物特征. 内蒙古林业科技. 2020(02): 41-44 .
![]() | |
17. |
关追追,张彦东. 水曲柳节子时空分布特征与变色规律研究. 北京林业大学学报. 2020(08): 53-60 .
![]() | |
18. |
张亚伟,孙海龙,郑鸿权,卫月华. 施肥对水曲柳林木叶片SPAD值的影响. 森林工程. 2020(05): 34-39+44 .
![]() | |
19. |
李显鲜,杨培华,郝红科,康乐,陈雪姣. 油松人工林合理经营密度的研究. 林业资源管理. 2020(04): 34-43 .
![]() | |
20. |
魏永平. 不同密度杉木人工林各组分碳贮量分析. 福建林业科技. 2020(04): 14-17+47 .
![]() | |
21. |
马双娇,王庆成,崔东海,朱凯月,张勇,徐立清,胡建文. 抚育间伐对水曲柳天然林群落结构及植物多样性的影响. 东北林业大学学报. 2019(02): 1-7 .
![]() | |
22. |
张新洁,陆天宇,孙海龙,赵宏波. 氮磷添加对水曲柳化学计量特征和养分再吸收的影响. 森林工程. 2019(05): 16-21 .
![]() | |
23. |
李翔,王海燕,秦倩倩,王卓晖,解雅麟,王福增,郑永林,耿琦. 林分密度对半分解层凋落物现存量空间异质性的影响. 应用与环境生物学报. 2019(04): 817-822 .
![]() | |
24. |
刘可欣,赵宏波,张新洁,冯晨辛,张彦东. 修枝强度对水曲柳光合作用及细根非结构性碳的影响. 东北林业大学学报. 2019(11): 42-46 .
![]() | |
25. |
范春楠,郑金萍,韩士杰,郭忠玲,王丽丽,周振钊. 吉林省中东部森林分布区水曲柳分布及其生态特征. 北京林业大学学报. 2017(04): 1-11 .
![]() |