Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
Citation: Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133

Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects

More Information
  • Received Date: May 04, 2020
  • Revised Date: July 06, 2020
  • Available Online: September 23, 2020
  • Published Date: October 24, 2020
  •   Objective   This paper aims to establish an age group-individual tree two-level primary branch diameter model for Larix olgensis using the nonlinear mixed effect model approach, and provide theoretical basis for the research on the characteristics and differences of branch diameter growth in different age groups.
      Method   Out of four improved basic models, one was selected as the basic model after referring to the adjusting coefficient (R2adj) and root mean square error (RMSE). Nonlinear mixed-effect model of the branch diameter was constructed based on the selected model. Independent data were used to verify the model fitting results, while mean absolute error (MAE) and mean relative absolute error (MRAE) were used to evaluate the model prediction ability. The prediction values of the basic model and the mixed model were compared. Simulation of the branch diameter distribution in each age group was done using the random parameters from age group level.
      Result   Based on the improved Gompertz equation, the model performed the best when the age group random effects acted on parameter b, the individual tree random effects acted on parameters b, c and d at the same time, the variance-covariance structure of the random effects was generalized positive definite matrix, and the heteroscedasticity structure was power function. The adjustment coefficient (R2adj) of the mixed model was improved, and RMSE, MAE and MRAE were all significantly reduced. The values of the adjustment coefficient, RMSE, MAE and MRAE of the final model were 0.699 8, 4.768 4 mm, 3.705 8 mm and 0.391 6 mm, respectively. The predicted values of the mixed model reflected the differences between individual trees. The distribution range of branch diameter was found increasing with the increase of age groups, and the branch diameter growth showed difference between the age groups.
      Conclusion   The accuracy of the mixed effect model of branch diameter can be improved by incorporating the random effects of age groups and individual trees into the model. Simulation of the branch diameter growth using the random effect parameters in the age group level can reasonably reflect their growth patterns and differences, and also conform to the significance of the tree physiology. Therefore, the mixed effect model based on age group and individual tree level can reasonably predict the growth of primary branch diameter of Larix olgensis at different ages.
  • [1]
    Brown P L, Doley D, Keenan R J. Stem and crown dimensions as predictors of thinning responses in a crowded tropical rainforest plantation of Flindersia brayleyana F. Muell[J]. Forest Ecology and Management, 2004, 196(2): 379−392.
    [2]
    Maguire D A, Kershaw J A, Hann D W. Predicting the effects of silvicultural regime on branch size and crown wood core in Douglas-fir[J]. Forest Science, 1991, 37(5): 1409−1428.
    [3]
    王小青, 刘杏娥, 任海青. 树冠特征对小黑杨木材性质和生长量的影响研究[J]. 林业科学研究, 2007, 20(6):801−806. doi: 10.3321/j.issn:1001-1498.2007.06.011.

    Wang X Q, Liu X E, Ren H Q. Effects of crown attributes on wood characteristics and increments of Populus × xiaohei[J]. Forest Research, 2007, 20(6): 801−806. doi: 10.3321/j.issn:1001-1498.2007.06.011.
    [4]
    Groot A, Schneider R. Predicting maximum branch diameter from crown dimensions, stand characteristics and tree species[J]. Forestry Chronicle, 2011, 87(4): 542−551.
    [5]
    孙晓, 李春友, 贺红月, 等. ‘107杨’一级枝条基径和长度的动态模拟研究[J]. 林业与生态科学, 2018, 33(4):364−372.

    Sun X, Li C Y, He H Y, et al. Dynamic simulation of length and diameter of first branches of ‘107 poplar’[J]. Forestry and Ecological Sciences, 2018, 33(4): 364−372.
    [6]
    李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. doi: 10.11707/j.1001-7488.20120311.

    Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311.
    [7]
    Yang Y, Huang S. Allometric modelling of crown width for white spruce by fixed- and mixed-effects models[J]. The Forestry Chronicle, 2017, 93(2): 138−147.
    [8]
    朱万才, 贾炜玮. 基于随机效应的红松人工林一级枝条动态生长模型[J]. 森林工程, 2015, 31(4):26−32. doi: 10.3969/j.issn.1001-005X.2015.04.007.

    Zhu W C, Jia W W. Dynamic growth model for First-hierarchy branch of Korean pine plantation based on mixed effect model[J]. Forest Engineering, 2015, 31(4): 26−32. doi: 10.3969/j.issn.1001-005X.2015.04.007.
    [9]
    姜立春, 李凤日, 张锐. 基于线性混合模型的落叶松枝条基径模型[J]. 林业科学研究, 2012, 25(4):464−469. doi: 10.3969/j.issn.1001-1498.2012.04.009.

    Jiang L C, Li F R, Zhang R. Modeling branch diameter with linear mixed effects for Dahurian larch[J]. Forest Research, 2012, 25(4): 464−469. doi: 10.3969/j.issn.1001-1498.2012.04.009.
    [10]
    Chun-Sheng W, Cheng T, Sebastian H, et al. Branch development of five-year-old Betula alnoides plantations in response to planting density[J/OL]. Forests, 2018, 9(1): 42 [2019−11−12]. https://doi.org/10.3390/f9010042.
    [11]
    Weiskittel A R, Maguire D A, Monserud R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth[J]. Forest Ecology and Management, 2007, 251(3): 182−194.
    [12]
    姜立春, 潘莹, 李耀翔. 兴安落叶松枝条特征联立方程组模型及树冠形状模拟[J]. 北京林业大学学报, 2016, 38(6):1−7.

    Jiang L C, Pan Y, Li Y X. Model systems of branch characteristics and crown profile simulation for Larix gmelinii[J]. Journal of Beijing Forestry University, 2016, 38(6): 1−7.
    [13]
    陈东升, 孙晓梅, 李凤日. 落叶松人工林枝条直径和长度的非线性混合模型[J]. 南京林业大学学报(自然科学版), 2015, 39(6):74−80.

    Chen D S, Sun X M, Li F R. Nonlinear mixed models of branch diameter and length in larch plantation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6): 74−80.
    [14]
    Lemay A, Pamerleau-Couture É, Krause C. Maximum branch diameter in black spruce following partial cutting and clearcutting[J/OL]. Forests 2019, 10(10): 913 [2020−01−03]. https://www.mdpi.com/1999-4907/10/10/913.
    [15]
    Jia W, Chen D. Nonlinear mixed-effects height to crown base and crown length dynamic models using the branch mortality technique for a Korean larch (Larix olgensis) plantations in northeast China[J]. Journal of Forestry Research, 2019, 30(6): 2095−2109.
    [16]
    贾炜玮, 孙守强, 李凤日, 等. 基于混合模型的红松人工林枝条动态研究[J]. 植物研究, 2015, 35(3):425−430. doi: 10.7525/j.issn.1673-5102.2015.03.016.

    Jia W W, Sun S Q, Li F R, et al. Branch dynamics for the Korean pine plantation based on linear mixed model[J]. Bulletin of Botanical Research, 2015, 35(3): 425−430. doi: 10.7525/j.issn.1673-5102.2015.03.016.
    [17]
    王春红, 李凤日, 贾炜玮, 等. 基于非线性混合模型的红松人工林枝条生长[J]. 应用生态学报, 2013, 24(7):1945−1952.

    Wang C H, Li F R, Jia W W, et al. Branch growth of Korean pine plantation based on nonlinear mixed model[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1945−1952.
    [18]
    Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220.
    [19]
    高慧淋, 董利虎, 李凤日. 基于混合效应的人工落叶松树冠轮廓模型[J]. 林业科学, 2017, 53(3):84−93. doi: 10.11707/j.1001-7488.20170310.

    Gao H L, Dong L H, Li F R. Crown shape model for Larix olgensis plantation based on mixed effect[J]. Forest Research, 2017, 53(3): 84−93. doi: 10.11707/j.1001-7488.20170310.
    [20]
    Fu L, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. Forest Ecology and Management, 2013, 302: 210−220.
    [21]
    罗恒春, 张超, 魏安超, 等. 云南松林分平均高生长模型及模型参数环境解释[J]. 北京林业大学学报, 2018, 40(4):67−75.

    Luo H C, Zhang C, Wei A C, et al. Stand average height growth model and environmental interpretation in model parameter of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2018, 40(4): 67−75.
    [22]
    洪奕丰, 陈东升, 申佳朋, 等. 长白落叶松人工林单木和林分水平的相容性生物量模型研究[J]. 林业科学研究, 2019, 32(4):33−40.

    Hong Y F, Chen D S, Shen J P, et al. Compatible biomass models forLarix olgensis plantation based on tree-level and stand-level[J]. Forest Research, 2019, 32(4): 33−40.
    [23]
    罗恒春, 张超, 魏安超, 等. 云南松林分平均胸径生长模型及模型参数环境解释[J]. 浙江农林大学学报, 2018, 35(6):1079−1087. doi: 10.11833/j.issn.2095-0756.2018.06.011.

    Luo H C, Zhang C, Wei A C, et al. Average DBH growth model of a stand with environmental parameters for Pinus yunnanensis in central Yunnan, China[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1079−1087. doi: 10.11833/j.issn.2095-0756.2018.06.011.
    [24]
    Huff S, Poudel K P, Ritchie M, et al. Quantifying aboveground biomass for common shrubs in northeastern California using nonlinear mixed effect models[J]. Forest Ecology and Management, 2018, 424: 154−163.
    [25]
    姜立春, 张锐, 李凤日. 基于线性混合模型的落叶松枝条长度和角度模型[J]. 林业科学, 2012, 48(5):53−60. doi: 10.11707/j.1001-7488.20120508.

    Jiang L C, Zhang R, Li F R. Modeling branch length and branch angle with linear mixed effects for Dahurian larch[J]. Scientia Silvae Sinicae, 2012, 48(5): 53−60. doi: 10.11707/j.1001-7488.20120508.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Wang Baoying, Liang Ruiting, Xie Yunhong, Qiu Siyu, Sun Yujun. Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect[J]. Journal of Beijing Forestry University, 2023, 45(11): 33-41. DOI: 10.12171/j.1000-1522.20220496
    [4]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [5]Jia Weiwei, Luo Tianze, Li Fengri. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. Journal of Beijing Forestry University, 2021, 43(2): 10-21. DOI: 10.12171/j.1000-1522.20200057
    [6]WANG Man-lin, DONG Li-hu, LI Feng-ri. First-order branch number simulation for Larix olgensis plantation through Poisson regression mixed effect model[J]. Journal of Beijing Forestry University, 2017, 39(11): 45-55. DOI: 10.13332/j.1000-1522.20170204
    [7]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [8]LI Yao-xiang, JIANG Li-chun. Modeling wood tracheid length based on nonlinear mixed model for dahurian larch[J]. Journal of Beijing Forestry University, 2013, 35(3): 18-23.
    [9]LI Chun-ming, LI Li-xue. Height-diameter relationship for Quercus variabilisBlume plantations based on nonlinear mixed model.[J]. Journal of Beijing Forestry University, 2009, 31(4): 7-12.
    [10]LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49.
  • Cited by

    Periodical cited type(25)

    1. 罗也,王君,杨雨春,何怀江,刘婷. 东北胡桃楸次生林生长随林龄和林分密度的变化规律. 北京林业大学学报. 2024(06): 10-19 . 本站查看
    2. 李玉凤,郭飞,莫燕华,秦佳双,马姜明. 两种密度马尾松人工林生态系统碳储量及其分配特征. 广西林业科学. 2024(05): 577-584 .
    3. 曹欣媛,袁丛军,王浩东,陈梦,李君一,单绍朋,姜克,张家才. 乌蒙山不同龄组华山松林乔木层碳密度及固碳释氧能力. 贵州林业科技. 2023(01): 32-38+31 .
    4. 冯宜明,吕春燕,王零,赵维俊,马雪娥,杜军林,何俊龄. 不同林分密度青海云杉林碳氮储量及其分配格局. 干旱区地理. 2023(07): 1133-1144 .
    5. 代林利,周丽丽,伍丽华,刘丽,黄樱,彭婷婷,邱静雯,何宗明,曹光球. 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征. 生态学报. 2022(02): 710-719 .
    6. 郑颖,冯健,于世河,卜鹏图,王月婵,黄夏,郑璐. 辽东山区不同密度落叶松人工幼龄林林木生长和土壤养分特性. 中南林业科技大学学报. 2022(01): 94-103 .
    7. 刘延坤,李云红,陈瑶,刘玉龙,田松岩. 坡位对不同密度长白落叶松人工林生态系统碳储量的影响. 贵州农业科学. 2022(07): 133-140 .
    8. 董灵波,陈冠谋,蔺雪莹,刘兆刚. 基于CO_2FIX模型的长白落叶松人工林碳汇和木材生产模拟. 应用生态学报. 2022(10): 2653-2662 .
    9. 刘海英,王增,徐耀文,葛晓改,周本智,蒋仲龙. 不同林分密度毛竹林生态系统碳储量特征. 中国农学通报. 2022(35): 17-21 .
    10. 赖敏英,肖集泓,李媚,王春晓,邓传远. 平潭岛植物群落乔木层碳储量及影响因素研究. 山东林业科技. 2022(06): 19-26 .
    11. 李玉凤,李妹珍,马姜明,宋尊荣,莫燕华,杨章旗,陆绍浩. 林分密度对马尾松人工林土壤碳储量及其分配特征的影响. 广西林业科学. 2021(01): 54-59 .
    12. 朱万才,吴瑶,李亚洲,张怡春. 不同保留密度对落叶松水曲柳混交林的影响. 森林工程. 2021(02): 50-56+94 .
    13. 杜满义,封焕英,裴顺祥,张连金,法蕾,郭嘉,辛学兵. 晋南不同密度油松人工林土壤水分的物理特性. 东北林业大学学报. 2021(09): 72-76 .
    14. 吴敏,陈瑞,李贵,刘振华,童琪,童方平. 武陵石漠化山地林分有机碳密度分布特征研究. 湖南林业科技. 2021(06): 9-15 .
    15. 马学发,卫月华,梁凤和,孙志虎,王庆成,龚丽芳,左肖罗,王梦阳. 不同造林密度水曲柳人工林大径材培育首次间伐临界胸径的确定. 东北林业大学学报. 2020(08): 1-5 .
    16. 张海东,季蒙,王志波,卜玉强,李银祥,伊敏,于楠楠,田稼穑,刘佳. 苏木山不同林分密度华北落叶松人工林枯落物特征. 内蒙古林业科技. 2020(02): 41-44 .
    17. 关追追,张彦东. 水曲柳节子时空分布特征与变色规律研究. 北京林业大学学报. 2020(08): 53-60 . 本站查看
    18. 张亚伟,孙海龙,郑鸿权,卫月华. 施肥对水曲柳林木叶片SPAD值的影响. 森林工程. 2020(05): 34-39+44 .
    19. 李显鲜,杨培华,郝红科,康乐,陈雪姣. 油松人工林合理经营密度的研究. 林业资源管理. 2020(04): 34-43 .
    20. 魏永平. 不同密度杉木人工林各组分碳贮量分析. 福建林业科技. 2020(04): 14-17+47 .
    21. 马双娇,王庆成,崔东海,朱凯月,张勇,徐立清,胡建文. 抚育间伐对水曲柳天然林群落结构及植物多样性的影响. 东北林业大学学报. 2019(02): 1-7 .
    22. 张新洁,陆天宇,孙海龙,赵宏波. 氮磷添加对水曲柳化学计量特征和养分再吸收的影响. 森林工程. 2019(05): 16-21 .
    23. 李翔,王海燕,秦倩倩,王卓晖,解雅麟,王福增,郑永林,耿琦. 林分密度对半分解层凋落物现存量空间异质性的影响. 应用与环境生物学报. 2019(04): 817-822 .
    24. 刘可欣,赵宏波,张新洁,冯晨辛,张彦东. 修枝强度对水曲柳光合作用及细根非结构性碳的影响. 东北林业大学学报. 2019(11): 42-46 .
    25. 范春楠,郑金萍,韩士杰,郭忠玲,王丽丽,周振钊. 吉林省中东部森林分布区水曲柳分布及其生态特征. 北京林业大学学报. 2017(04): 1-11 . 本站查看

    Other cited types(16)

Catalog

    Article views (1727) PDF downloads (114) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return