• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. DOI: 10.12171/j.1000-1522.20200172
Citation: Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. DOI: 10.12171/j.1000-1522.20200172

Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves

More Information
  • Received Date: June 04, 2020
  • Revised Date: September 21, 2020
  • Available Online: April 20, 2021
  • Published Date: May 26, 2021
  •   Objective   This study aims to investigate the effects of two arbuscular mycorrhizal fungi, Glomus mosseae (GM) and Glomus intraradices (GI) on the metabolism and chemical defense of Populus alba × P. berolinensis leaves.
      Method   In this study, each poplar seedling cut was planted into a pot filled with 1.3 kg sterilized soil mixed with 20 g fungal substrate containing 15 spore/g of either GM or GI. The contents of N, P elements, nutrients and secondary metabolites, as well as the activity of defense proteins in leaves of the poplar seedlings were analyzed on the 90th day after the planting when the fungal infection rate reached the peak.
      Result   The contents of N, P elements and soluble proteins in the poplar leaves from the GM or GI treatment group were significantly higher than those from the control group (P < 0.05), whereas the soluble sugar content was significantly lower (P < 0.05). There were no significant differences in starch contents between the GM or GI treatment group and the control group (P > 0.05). The contents of secondary metabolites, lignin, flavonoids, total phenols and tannins were significantly higher in the GM or GI treatment group than those in the control group (P < 0.05). The activities of defense proteins, phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), trypsin inhibitor (TI) and chymotrypsin inhibitor (CI) were all significantly higher in the treatment groups than those in the control group (P < 0.05).
      Conclusion   The above results indicate that GM and GI might promote the metabolism of Populus alba × P. berolinensis leaves, including increase in the contents of N, P elements and soluble proteins and decrease in the content of soluble sugars, resulting in potential changes in leaf quality, and improvement of leaf tolerance. GM or GI infestation seems to increase the chemical defense ability of the poplar leaves, such as the increase of secondary metabolite contents and activity of defense proteins, thus might affect the resistance of Populus alba × P. berolinensis leaves to pests. However, further research is surely needed to determine whether these two arbuscular mycorrhizal fungi can significantly enhance the resistance of Populus alba × P. berolinensis to pest insects.
  • [1]
    Rosendahl S. Communities, populations and individuals of arbuscular mycorrhizal fungi[J]. New Phytologist, 2008, 178(2): 253−266.
    [2]
    Wu F, Zhang H, Fang F, et al. Arbuscular mycorrhizal fungi alter nitrogen allocation in the leaves of Populus × canadensis ‘Neva’[J]. Plant and Soil, 2017, 421: 477−491. doi: 10.1007/s11104-017-3461-0
    [3]
    Hoffman M J, Stafford G I, Makunga N P. The role of alkaloids in chemical defence in chemical defence in Clivia miniata (Amaryllidaceae) against herbivory by Brithys crini[J]. South African Journal of Botany, 2018, 115: 319−320.
    [4]
    Dučaiová Z, Sajko M, Mihaličová S, et al. Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation[J]. Plant Growth Regulation, 2015, 79(1): 81−94.
    [5]
    Shahabinejad M, Shojaaddini M, Maserti B, et al. Exogenous application of methyl jasmonate and salicylic acid increases antioxidant activity in the leaves of pistachio (Pistacia vera L. cv. Fandoughi) trees and reduces the performance of the phloem-feeding psyllid Agonoscena pistaciae[J]. Arthropod-Plant Interactions, 2014, 8(6): 525−530.
    [6]
    Heredia J B, Cisneros-Zevallos L. The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities[J]. Postharvest Biology & Technology, 2009, 51(2): 242−249.
    [7]
    Medel V, Palma R, Mercado D, et al. The effect of protease inhibitors on digestive proteolytic activity in the raspberry weevil, Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae)[J]. Neotropical Entomology, 2015, 44(1): 77−83. doi: 10.1007/s13744-014-0250-9
    [8]
    姜礅. 重金属胁迫下银中杨抗虫性及食叶害虫舞毒蛾解毒机制研究[D]. 哈尔滨: 东北林业大学, 2019.

    Jiang D. Study on the insect resistance of Populus alba × P. berolinensis and the detoxification mechanism of defoliator, Lymantria dispar under heavy metal stress[D]. Harbin: Northeast Forestry University, 2019.
    [9]
    Mehrkhou F, Mahmoodi L, Mouavi M. Nutritional indices parameters of large white butterfly Pieris brassicae (Lepidoptera: Pieridae) on different cabbage crops[J]. Archives of Phytopathology and Plant Protection, 2013, 8(25): 3294−3298.
    [10]
    王小菲, 高文强, 刘建锋, 等. 植物防御策略及其环境驱动机制[J]. 生态学杂志, 2015, 34(12):3542−3552.

    Wang X F, Gao W Q, Liu J F, et al. Plant defense strategy and its environmental driving mechanism[J]. Journal of Ecology, 2015, 34(12): 3542−3552.
    [11]
    Oliveira J S F D, Xavier L P, Lins A, et al. Effects of inoculation by arbuscular mycorrhizal fungi on the composition of the essential oil, plant growth, and lipoxygenase activity of Piper aduncum L[J/OL]. AMB Express, 2019, 9(1): 29 [2020−02−11]. https://link.springer.com/article/10.1186/s13568-019-0756-y.
    [12]
    Hill E M, Robinson L A, Abdul-Sada A, et al. Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes[J]. Journal of Chemical Ecology, 2018, 44(2): 198−208. doi: 10.1007/s10886-017-0921-1
    [13]
    Wang M G, Bezemer T M, Putten W H, et al. Effects of the timing of herbivory on plant defense induction and insect performance in ribwort plantain (Plantago lanceolata L.) depend on plant mycorrhizal status[J]. Journal of Chemical Ecology, 2015, 41(11): 1006−1017. doi: 10.1007/s10886-015-0644-0
    [14]
    Nishida T, Katayama N, Izumi N, et al. Arbuscular mycorrhizal fungi species-specifically affect induced plant responses to a spider mite[J]. Population Ecology, 2010, 52(4): 507−515. doi: 10.1007/s10144-010-0208-7
    [15]
    Barber N A. Arbuscular mycorrhizal fungi are necessary for the induced response to herbivores by Cucumis sativus[J]. Journal of Plant Ecology, 2013, 6(2): 171−176. doi: 10.1093/jpe/rts026
    [16]
    Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55: 158−161. doi: 10.1016/S0007-1536(70)80110-3
    [17]
    Mcgonigle T P, Miller M H, Evans D G, et al. A new method which gives an objective measure of colonization of roots by vesicular: arbuscular mycorrhizal fungi[J]. New Phytologist, 1990, 115(3): 495−501.
    [18]
    赵静. 土壤酸化对土壤有效养分、酶活性及黄金梨品质的影响[D]. 泰安: 山东农业大学, 2011.

    Zhao J. Effects of soil acidification on available soil nutrients, soil enzyme activities and characters of Whangkeumbae in pear orchards[D]. Taian: Shandong Agricultural University, 2011.
    [19]
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1−2): 248−254. doi: 10.1016/0003-2697(76)90527-3
    [20]
    孟昭军. 外源茉莉酸类化合物对两种落叶松的诱导抗虫性研究[D]. 哈尔滨: 东北林业大学, 2008.

    Meng Z J. Study on the induced resistance of two larch species treated with exogenous jasmonates to insects[D]. Harbin: Northeast Forestry University, 2008.
    [21]
    王燕芳. 茉莉酸甲酯和水杨酸诱导棉花抗虫性的初步研究[D]. 阿拉尔: 塔里木大学, 2015.

    Wang Y F. A preliminary study on induced resistance against cotton insect by methyl jasmonate and salicylate[D]. Alaer: Tarim University, 2015.
    [22]
    段文昌, 段立清, 李海平, 等. 外源茉莉酸及枸杞瘿螨危害诱导的枸杞防御反应[J]. 昆虫学报, 2012, 55(7):804−809.

    Duan W C, Duan L Q, Li H P, et al. Defense responses in wolfberry (Lycium barbarum) induced by exogenous jasmonic acid and gall mite Aceria pallida (Acari: Eriophyidae)[J]. Acta Entomologica Sinica, 2012, 55(7): 804−809.
    [23]
    黄文烨. 山竹壳中果胶和酚类物质的提取纯化及理化性质研究[D]. 广州: 暨南大学, 2016.

    Huang W Y. Extraction and characterization of pectin and phenolics from Mangosteen rind[D]. Guangzhou: Jinan University, 2016.
    [24]
    范旭东. 浙江千岛湖地区苦槠叶片昆虫取食状类型和取食强度研究[D]. 上海: 华东师范大学, 2008.

    Fan X D. Intensity and patterns of Castanopsis sclerophylla leaf eaten by insects at Qiandao Lake, Zhejiang[D]. Shanghai: East China Normal University, 2008.
    [25]
    Jia Z S, Tang M C, Wu J M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals[J]. Food Chemistry, 1999, 64(4): 555−559. doi: 10.1016/S0308-8146(98)00102-2
    [26]
    任琴, 胡永建, 李镇宇, 等. 受害马尾松木质素含量及其过氧化物酶活性[J]. 生态学报, 2007, 26(11):4895−4899. doi: 10.3321/j.issn:1000-0933.2007.11.060

    Ren Q, Hu Y J, Li Z Y, et al. Content variation of lignin and peroxidase activities from damaged Pinus massioniana[J]. Journal of Ecology, 2007, 26(11): 4895−4899. doi: 10.3321/j.issn:1000-0933.2007.11.060
    [27]
    Tao L, Ahmad A, de Roode J C, et al. Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms[J]. Journal of Ecology, 2016, 104(2): 561−571. doi: 10.1111/1365-2745.12535
    [28]
    王倡宪, 秦岭, 冯固, 等. 三种丛枝菌根真菌对黄瓜幼苗生长的影响[J]. 农业环境科学学报, 2003, 22(3):301−303. doi: 10.3321/j.issn:1672-2043.2003.03.012

    Wang C X, Qin L, Feng G, et al. Effects of three arbuscular mycorrhizal fungi on growth of cucumber seedlings[J]. Journal of Agricultural Environmental Science, 2003, 22(3): 301−303. doi: 10.3321/j.issn:1672-2043.2003.03.012
    [29]
    Wang L, Pokharel S S, Chen F J. Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize[J/OL]. PeerJ, 2019: 7 [2020−01−23]. https://doi.org/10.7287/peerj.preprints.27643v1.
    [30]
    邹碧莹, 张云翼. 丛枝菌根(AM)真菌对植物营养代谢的影响研究进展[J]. 现代农业科技, 2008(15):10−13. doi: 10.3969/j.issn.1007-5739.2008.15.003

    Zou B Y, Zhang Y Y. Research progress on the effect of arbuscular mycorrhizal (AM) fungi on plant nutrient metabolism[J]. Modern Agricultural Science and Technology, 2008(15): 10−13. doi: 10.3969/j.issn.1007-5739.2008.15.003
    [31]
    Bonfante P, Gnre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nat Commun, 2010, 1: 1−11.
    [32]
    张妮娜. 接种丛枝菌根真菌(AMF)对盆栽柑橘幼苗抗旱性的影响[D]. 重庆: 西南大学, 2018.

    Zhang N N. Influences of arbuscular mycorrhizal fungi(AMF)inoculation on drought resistance mechanism of the potted citrus plantlets[D]. Chongqing: Southwest University, 2018.
    [33]
    Moeser J, Vidal S. Response of larvae of invasive maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to carbon/nitrogen ratio and phytosterol content of European maize varieties[J]. Journal of Economic Entomology, 2004, 4: 1335.
    [34]
    Zhang X, Lu C H, Chen Y, et al. Relationship between leaf C/N ratio and insecticidal protein expression in Bt cotton as affected by high temperature and N rate[J]. Journal of Integrative Agriculture, 2014, 13(1): 82−88. doi: 10.1016/S2095-3119(13)60348-2
    [35]
    Gherlenda A N, Haigh A M, Moore B D, et al. Climate change, nutrition and immunity: effects of elevated CO2 and temperature on the immune function of an insect herbivore[J]. Journal of Insect Physiology, 2016, 85: 57−64.
    [36]
    马艳, 夏敬源. 取食不同施氮量棉花对棉铃虫发育与繁殖的影响[J]. 中国棉花, 1997(1):14−15.

    Ma Y, Xia J Y. Effects of feeding on Gossypium spp. with different nitrogen application rates on the development and reproduction of Helicoverpa armigera[J]. Chinese Cotton, 1997(1): 14−15.
    [37]
    钱为. 分月扇舟蛾诱导杨树防御反应的研究[D]. 南京: 南京林业大学, 2010.

    Qian W. Defense responses of poplar induced by Clostera anastomosis [D]. Nanjing: Nanjing Forestry University, 2010.
    [38]
    Jiang D, Yan S C. MeJA is more effective than JA in inducing defense responses in Larix olgensis[J]. Arthropod Plant Interactions, 2018, 12(1): 49−56. doi: 10.1007/s11829-017-9551-3
    [39]
    Selvaraj A, Thangavel K, Uthandi S, et al. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation[J]. Microbiological Research, 2020, 231: 126355. doi: 10.1016/j.micres.2019.126355
    [40]
    周志强, 胡燕妮, 彭英丽, 等. 3种丛枝菌根真菌对不同种源黄檗幼苗的影响[J]. 植物研究, 2015, 35(1):92−100. doi: 10.7525/j.issn.1673-5102.2015.01.015

    Zhou Z Q, Hu Y N, Peng Y L, et al. Effects of three arbuscular mycorrhizas on different provenances of amur cork seedlings[J]. Bulletin of Botanical Research, 2015, 35(1): 92−100. doi: 10.7525/j.issn.1673-5102.2015.01.015
  • Cited by

    Periodical cited type(5)

    1. 李娜娜,张冬冬,李鑫,刘小东,李海江,李宜璇. 放牧强度对草地丛枝菌根真菌多样性的影响. 现代畜牧科技. 2025(02): 85-89 .
    2. 王琪,马宇佳,赵佳齐,严善春. 从枝菌根真菌对青山杨生长及其物质代谢的影响. 林业科技. 2024(05): 36-42 .
    3. 邓薪岐,王谢,严晓军,柯佳君,杨叶,李艳,徐丹萍,卓志航,严贤春. 转录组和代谢组在林木真菌病害防御反应中的应用研究进展. 世界林业研究. 2022(04): 27-32 .
    4. 方静,武帅,姜礅,谭明涛,赵佳齐,孟昭军,严善春. 丛枝菌根真菌定殖银中杨对舞毒蛾幼虫食物利用及适应性的影响. 菌物学报. 2022(12): 2016-2024 .
    5. 张守攻. 林木重要性状形成的分子基础研究进展. 中国农业科技导报. 2022(12): 48-58 .

    Other cited types(8)

Catalog

    Article views (1217) PDF downloads (62) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return