Citation: | Yang Ruixia, Yin Peng, Liu Xiao, Wang Yan, Liu Jiafu, Xu Jichen. Expansin gene family in association with the genome differentiation of Salix matsudana[J]. Journal of Beijing Forestry University, 2021, 43(1): 37-48. DOI: 10.12171/j.1000-1522.20200216 |
[1] |
Ma N, Wang Y, Qiu S, et al. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension[J/OL]. PLoS One, 2013, 8(10): e75997 (2013−10−04) [2019−03−13]. https://doi.org/10.1371/journal.pone.0075997.eCollection 2013.
|
[2] |
Kuluev B, Safiullina M, Knyazev A, et al. Effect of ectopic expression of NtEXPA5
|
[3] |
Yan A, Wu M, Yan L, et al. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis[J/OL]. PLoS One, 2014, 9(1): e85208 (2014−01−03) [2019−04−07]. https://doi.org/10.1371/journal.pone.0085208.
|
[4] |
Ouyang K X, Liu M Q, Pian R Q, et al. Methodology Isolation and analysis of α-expansin genes in the tree Anthocephalus chinensis (Rubiaceae)[J]. Genetics and Molecular Research, 2013, 12(2): 1061−1073. doi: 10.4238/2013.April.10.2.
|
[5] |
Zenoni S, Fasoli M, Tornielli G B, et al. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida[J]. New Phytologist, 2011, 191(3): 662−677. doi: 10.1111/j.1469-8137.2011.03726.x.
|
[6] |
Perini M A, Sin I N, Villarreal N M, et al. Overexpression of the carbohydrate binding module from, Solanum lycopersicum, expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinereal susceptibility[J]. Plant Physiology and Biochemistry, 2017, 113: 122−132. doi: 10.1016/j.plaphy.2017.01.029.
|
[7] |
Castillo F M, Canales J, Claude A, et al. Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight[J/OL]. BMC Plant Biology, 2018, 18(1): 327 (2018−12−10) [2019−01−14]. https://doi.org/10.1186/s12870-018-1535-7.
|
[8] |
Feng X, Xu Y, Peng L, et al. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana [J/OL]. Journal of Plant Physiology, 2019, 240: 153004 (2019−06−25) [2019−09−07]. https://doi.org/10.1016/j.jplph.2019.153004.
|
[9] |
Ren Y Q, Chen Y H, An J, et al. Wheat expansin gene, TaEXPA2, is involved in conferring plant tolerance to Cd toxicity[J]. Plant Science, 2018, 270: 245−256. doi: 10.1016/j.plantsci.2018.02.022.
|
[10] |
Chen L J, Zou W S, Wu G, et al. Tobacco alpha-expansin EXPA4 plays a role in Nicotiana benthamiana defence against tobacco mosaic virus[J]. Planta, 2018, 247(2): 355−368. doi: 10.1007/s00425-017-2785-6
|
[11] |
Ding A, Marowa P, Kong Y. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum)[J]. Molecular Genetics & Genomics, 2016, 291(5): 1891−1907.
|
[12] |
Han Z S, Liu Y L, Deng X, et al. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.)[J/OL]. BMC Genomics, 2019, 20(1): 101 (2019−02−01) [2019−11−25]. https://doi.org/10.1186/s12864-019-5455-1.
|
[13] |
李昊阳, 施杨, 丁亚娜. 杨树扩展蛋白基因家族的生物信息学分析[J]. 北京林业大学学报, 2014, 36(2):59−67.
Li H Y, Shi Y, Ding Y N. Bioinformatics analysis of expansin gene family in poplar genome[J]. Journal of Beijing Forestry University, 2014, 36(2): 59−67.
|
[14] |
Hou L, Zhang Z Y, Dou S H, et al. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.)[J]. Planta, 2019, 249(3): 815−829.
|
[15] |
Santiago T R, Pereira V M, de Souza W R, et al. Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.)[J/OL]. PLoS One, 2018, 13(4): e0196140 (2018−04−17)[2019−05−17]. https://doi.org/10.1371/journal.pone.0196140.eCollection2018.
|
[16] |
Li N, Pu Y, Gong Y, et al. Genomic location and expression analysis of expansin gene family reveals the evolutionary and functional significance in Triticum aestivum[J]. Genes & Genomics, 2016, 38(5): 1021−1030.
|
[17] |
Zhang H, Li J, Wang R X, et al. Comparative analysis of expansin gene codon usage patterns among eight plant species[J]. Journal of Biomolecular Structure and Dynamics, 2019, 37(4): 910−917. doi: 10.1080/07391102.2018.1442746.
|
[18] |
Quiñones Martorello A S, Fernández M E, Monterubbianesi M G, et al. Effect of combined stress (salinity + hypoxia) and auxin rooting hormone addition on morphology and growth traits in six Salix spp. clones[J]. New Forests, 2020, 51: 61−80. doi: 10.1007/s11056-019-09719-8.
|
[19] |
耿云红. 干旱胁迫对绿化木本植物抗逆性研究[J]. 山东农业大学学报(自然科学版), 2019, 50(1):12−18.
Geng Y H. Study on resistance of woody plants under drought stress[J]. Journal of Shandong Agricultural University (Natural Science), 2019, 50(1): 12−18.
|
[20] |
刘春风. 淹水对15个树种苗木生长和形态特征的影响[D]. 南京: 南京林业大学, 2009.
Liu C F. Effects of artificial flooding on the growth and morphological characteristics of 15 trees species seedlings[D]. Nanjing: Nanjing Forestry University, 2009.
|
[21] |
Shu Y, Li K L, Song J F, et al. Single and competitive adsorption of Cd (Ⅱ) and Pb (Ⅱ) from aqueous solution by activated carbon prepared with Salix matsudana Kiodz[J]. Water Science and Technology, 2016, 74 (12): 2751−2761. doi: 10.2166/wst.2016.428.
|
[22] |
Gullberg U. Towards making willows pilot species for coppicing production[J]. The Forestry Chronicle, 1993, 69(6): 721−726. doi: 10.5558/tfc69721-6.
|
[23] |
Argus G W. Infrageneric classification of Salix (Salicaceae) in the new world[J]. Systematic Botany Monographs, 1997, 52: 1−121. doi: 10.2307/25096638.
|
[24] |
Zhang J, Yuan H, Li M, et al. A high-density genetic map of tetraploid Salix matsudana using specific length amplified fragment sequencing (SLAF-seq)[J/OL]. PLoS ONE, 2016, 11(6): e0157777 (2016−06−21) [2019−02−12]. https://doi.org/10.1371/journal.pone.0157777.eCollection2016.
|
[25] |
Zhang J, Yuan H, Yang Q, et al. The genetic architecture of growth traits in Salix matsudana under salt stress[J/OL]. Horticulture Research, 2017, 4: 17024 (2017−06−14) [2019−01−21]. https://doi.org/10.1038/hortres.2017.24. eCollection2017.
|
[26] |
Prabha R, Singh D P, Sinha S, et al. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes[J]. Marine Genomics, 2017, 32: 31−39. doi: 10.1016/j.margen.2016.10.001.
|
[27] |
Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhab-ditis, Drosophila, and Arabidopsis[J]. Proceedings of the National Academy of Sciences, 1999, 96: 4482−4487. doi: 10.1073/pnas.96.8.4482.
|
[28] |
王兰伟. 异源多倍体物种的形成和演化:来自菊科蓍草属的证据[D]. 开封: 河南大学, 2011.
Wang L W. Allotetraploid speciation and evolution: evidence from the eastern asia Achillea species[D]. Kaifeng: Henan University, 2011.
|
[29] |
Tayale A, Parisod C. Natural pathways to polyploidy in plants and consequences for genome reorganization[J]. Cytogenetic & Genome Research, 2013, 140: 2−4.
|
[30] |
Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution[J]. Current Genomics, 2002, 3(6): 489−505. doi: 10.2174/1389202023350255.
|
[31] |
Wei S, Yang Y, Yin T. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution [J/OL]. Horticulture Research, 2020, 7: 45 (2020−04−01) [2020−04−25]. https://www.nature.com/articles.
|
[32] |
Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and the genome hypothesis[J]. Nucleic Acids Research, 1980, 8(1): 49−62.
|
[33] |
Grantham R, Gautier C, Gouy M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type[J]. Nucleic Acids Research, 1980, 8(9): 1893−1912.
|
[34] |
Lloyd A T, Sharp P M. Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae[J]. Nucleic Acids Research, 1992, 20(20): 5289−5295. doi: 10.1093/nar/20.20.5289.
|
[35] |
Grocock R J, Sharp P M. Synonymous codon usage in Cryptosporidium parvum: identification of two distinct trends among genes[J]. International Journal for Parasitology, 2001, 31(4): 402−412. doi: 10.1016/S0020-7519(01)00129-1.
|
[36] |
Povolotskaya I S, Kondrashov F A, Ledda A, et al. Stop codons in bacteria are not selectively equivalent[J/OL]. Biology Direct, 2012, 7: 30 (2012−09−13)[2019−06−19]. https://link.springer.com/article/10.1186/1745-6150-7-30.
|
[37] |
Korkmaz G, Holm M, Wiens T, et al. Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance[J]. Journal of Biological Chemistry, 2014, 289(44): 30334−30342. doi: 10.1074/jbc.M114.606632.
|
[38] |
Krisko A, Copic T, Gabaldón T, et al. Inferring gene function from evolutionary change in signatures of translation efficiency [J/OL]. Genome Biology, 2014, 15: 44 (2014−03−03) [2019−06−08]. https://link.springer.com/article/10.1186/gb-2014-15-3-r44.
|
[39] |
Presnyak V, Alhusaini N, Chen Y H, et al. Codon optimality is a major determinant of mRNA stability[J]. Cell, 2015, 160(6): 1111−1124. doi: 10.1016/j.cell.2015.02.029.
|
[40] |
Navarro A, Barton N H. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes[J]. Science, 2003, 300: 321−324. doi: 10.1126/science.1080600.
|
[1] | Luo Yongjian, Wang Ru, Zhao Renfei, Lu Xinxiong, Yin Guangkun, Deng Zhijun. Analysis of synonymous codon usage bias in the chloroplast genome of Davidia involucrata[J]. Journal of Beijing Forestry University, 2024, 46(3): 8-16. DOI: 10.12171/j.1000-1522.20220199 |
[2] | Gao Mengjiao, Wang Linxia, Luo Zhi, Zhao Ruoyu, Liu Zhiguo, Liu Ping, Liu Mengjun, Wang Lixin. Molecular characteristics of CML genes in Chinese jujube and their expression patterns in resistance to cold stress[J]. Journal of Beijing Forestry University, 2023, 45(3): 58-67. DOI: 10.12171/j.1000-1522.20210334 |
[3] | Cui Yanhong, Li Ling, Bai Qian, Yang Qing, Su Shuchai. Identification and expression analysis during ovule development of Hsp90 gene family in Castanea mollissima[J]. Journal of Beijing Forestry University, 2022, 44(11): 10-19. DOI: 10.12171/j.1000-1522.20210272 |
[4] | Song Tingting, Liang Nansong, Lü Yipin, Cui Jinghong, Yu Lei, Zhao Fujiang, Xu Liang, Zhan Yaguang. Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica[J]. Journal of Beijing Forestry University, 2022, 44(2): 11-21. DOI: 10.12171/j.1000-1522.20210105 |
[5] | Wang Xue, Song Shuang, Li Meiyu, Bo Wenhao, Li Yingyue, Pang Xiaoming, Cao Ming. Identification and expression analysis based on RNA-Seq of the pectin methylesterase gene family in Ziziphus jujuba[J]. Journal of Beijing Forestry University, 2021, 43(4): 8-16. DOI: 10.12171/j.1000-1522.20200338 |
[6] | ZHAO Li-hong, ZHOU Fei, GUAN Min-xiao, LIU Chuang, ZHAO Xin, LIU Xue-mei. Analysis of differentially expressed transcripts in early and middle development of Betula platyphylla female inflorescence[J]. Journal of Beijing Forestry University, 2015, 37(4): 104-112. DOI: DOI:10.13332/j.1000-1522.20140301 |
[7] | LI Hao-yang, SHI Yang, DING Ya-na, XU Ji-chen.. Bioinformatics analysis of expansin gene family in poplar genome.[J]. Journal of Beijing Forestry University, 2014, 36(2): 59-67. |
[8] | GUAN Feng-ying, DENG Wang-hua, FAN Shao-hui. Spectral characteristics of Phyllostachys pubescens stand and its differential analysis with typical vegetation[J]. Journal of Beijing Forestry University, 2012, 34(3): 31-35. |
[9] | XU Xiao, XU Qian, ZHANG Kai, XU Ji-chen. Advancements in expansin genes of plants.[J]. Journal of Beijing Forestry University, 2010, 32(5): 154-162. |
[10] | XU Xiao, HUANG Bing-ru, XU Ji-chen. Analysis of AsEXP1 gene related to drought tolerance in creeping bentgrass[J]. Journal of Beijing Forestry University, 2010, 32(5): 126-131. |