• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shao Ming, Dong Yuxiang, Lin Chensong. Spatio-temporal evolution and driving factors of ecosystem services in Chengdu-Chongqing urban agglomeration of southwestern China based on GWR model[J]. Journal of Beijing Forestry University, 2020, 42(11): 118-129. DOI: 10.12171/j.1000-1522.20200217
Citation: Shao Ming, Dong Yuxiang, Lin Chensong. Spatio-temporal evolution and driving factors of ecosystem services in Chengdu-Chongqing urban agglomeration of southwestern China based on GWR model[J]. Journal of Beijing Forestry University, 2020, 42(11): 118-129. DOI: 10.12171/j.1000-1522.20200217

Spatio-temporal evolution and driving factors of ecosystem services in Chengdu-Chongqing urban agglomeration of southwestern China based on GWR model

More Information
  • Received Date: July 12, 2020
  • Revised Date: October 08, 2020
  • Available Online: October 28, 2020
  • Published Date: December 13, 2020
  •   Objective  The study on the temporal and spatial evolution characteristics and driving factors of the ecosystem services of Chengdu-Chongqing urban agglomeration can help planners grasp its situation of natural resource stock and development trend on a macro scale, reasonably formulate the planning and construction strategy of Chengdu-Chongqing urban agglomeration of southwestern China, so as to promote the construction of China’s western development platform.
      Method  In this study, the whole region of Chengdu-Chongqing urban agglomeration was selected as the research object, and 144 districts, counties and regions were taken as the research units. The values of ecosystem services were quantified by equivalent factor method, and the bi-directional driving factor index system of “natural environment-social economy” was established. On this basis, the least square method (OLS) model was used to screen the driving factor models with significant correlation, and the geographical weighted regression (GWR) model was used to study the driving correlation between the ecosystem services, natural environment characteristics and socio-economic factors of Chengdu-Chongqing urban agglomeration.
      Result  (1) The total amount of ecosystem services of Chengdu-Chongqing urban agglomeration showed a significant trend of deterioration. From 1995 to 2015(totally 5 periods, i.e. 1995, 2000, 2005, 2010, 2015), the ecosystem service values of Chengdu-Chongqing urban agglomeration were 347.053, 346.408, 345.243, 343.802 and 342.392 billion CNY, respectively, showing a value decline of 0.645 billion, 1.165 billion, 1.440 billion and 1.410 billion CNY, respectively compared with the former period. (2) The spatial distribution of ecosystem services in Chengdu-Chongqing urban agglomeration was characterized by significant regional distribution in the core urban centers of Chengdu and Chongqing and the central area of Jinyun-Zhongliang Mountains. More than 90.38% of the regional ecosystem services in the whole region were in a downward trend. (3) Research results on ecological driving factors of Chengdu-Chongqing urban agglomeration showed that, five driving factors, namely rainfall, temperature, per capita GDP, forestry land ratio and population density, had significant influences on ecosystem services of Chengdu-Chongqing urban agglomeration. Among them, rainfall and land per capita GDP showed obvious negative correlation driving characteristics, the proportion of forest land showed obvious positive correlation driving characteristics, and rainfall and population density showed obvious polarization trend.
      Conclusion  In this study, the status of deterioration of ecosystem services in Chengdu-Chongqing urban agglomeration was clarified. The GWR (geographic weighted regression) model was constructed to quantify the different driving characteristics and driving intensities of the five main driving factors of rainfall, temperature, land average GDP, forestry land proportion and population density on the ecosystem services of Chengdu-Chongqing urban agglomeration, which provide decision-making basis for the long-term planning of Chengdu-Chongqing urban agglomeration.
  • [1]
    Sun X, Crittenden J C, Li F, et al. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA[J]. Science of the Total Environment, 2018, 622−623: 974−987. doi: 10.1016/j.scitotenv.2017.12.062.
    [2]
    陈万旭, 李江风, 朱丽君. 长江中游地区生态系统服务价值空间分异及敏感性分析[J]. 自然资源学报, 2019, 34(2):325−337.

    Chen W X, Li J F, Zhu L J. Spatial heterogeneity and sensitivity analysis of ecosystem services value in the middle Yangtze River region[J]. Journal of Natural Resources, 2019, 34(2): 325−337.
    [3]
    Li T, Li J, Wang Y Z. Carbon sequestration service flow in the Guanzhong-Tianshui economic region of China: how it flows, what drives it, and where could be optimized?[J]. Ecological Indicators, 2019, 96: 548−558. doi: 10.1016/j.ecolind.2018.09.040.
    [4]
    闻熠, 高峻, 姚扬, 等. 基于改进参数的长三角城市群生态足迹时空动态及驱动因子分析[J]. 环境工程技术学报, 2020, 10(1):133−141. doi: 10.12153/j.issn.1674-991X.20190061.

    Wen Y, Gao J, Yao Y, et al. Spatial and temporal dynamics and driving factor analysis of ecological footprint of Yangtze River Delta urban agglomeration based on improved parameters[J]. Journal of Environmental Engineering Technology, 2020, 10(1): 133−141. doi: 10.12153/j.issn.1674-991X.20190061.
    [5]
    Chen W X, Chi G Q, Li J F. Ecosystem services and their driving forces in the middle reaches of the Yangtze River urban agglomerations, China[J/OL]. International Journal of Environmental Research and Public Health, 2020, 17(10): 3717 [2020−01−18]. https://www.mdpi.com/1660-4601/17/10/3717.
    [6]
    李凯, 刘涛, 曹广忠. 中国典型城市群空间范围的动态识别与空间扩展模式探讨: 以长三角城市群、武汉城市群和成渝城市群为例[J]. 城市发展研究, 2015, 22(11):72−79. doi: 10.3969/j.issn.1006-3862.2015.11.012.

    Li K, Liu T, Cao G Z. Spatial dynamics and expansion model of urban agglomerations in China: the experiences of Yangtze River Delta, Chengdu-Chongqing, and Wuhan urban agglomerations[J]. Urban Development Studies, 2015, 22(11): 72−79. doi: 10.3969/j.issn.1006-3862.2015.11.012.
    [7]
    李凯, 刘涛, 曹广忠. 城市群空间集聚和扩散的特征与机制:以长三角城市群、武汉城市群和成渝城市群为例[J]. 城市规划, 2016, 40(2):18−26, 60. doi: 10.11819/cpr20160204a.

    Li K, Liu T, Cao G Z. Characteristics and mechanism of spatial concentration and dispersion of the representative urban agglomerations in China: a case study of Yangtze River Delta urban agglomerations, Wuhan urban agglomerations, and Chengdu-Chongqing urban agglomerations[J]. City Planning Review, 2016, 40(2): 18−26, 60. doi: 10.11819/cpr20160204a.
    [8]
    蒋奕廷, 蒲波. 基于引力模型的成渝城市群吸引力格局研究[J]. 软科学, 2017, 31(2):98−102.

    Jiang Y T, Pan B. Analysis of attraction pattern in Chengdu-Chongqing urban agglomeration based on a gravity model[J]. Soft Science, 2017, 31(2): 98−102.
    [9]
    吴朋, 李玉刚, 管程程, 等. 基于ESDA-GIS的成渝城市群人居环境质量测度与时空格局分异研究[J]. 中国软科学, 2018(10):93−108. doi: 10.3969/j.issn.1002-9753.2018.10.011.

    Wu P, Li Y G, Guan C C, et al. Spatial-temporal differentiation of human settlement in Chengdu-Chongqing urban agglomeration based on ESDA-GIS[J]. China Soft Science, 2018(10): 93−108. doi: 10.3969/j.issn.1002-9753.2018.10.011.
    [10]
    潘碧麟, 王江浩, 葛咏, 等. 基于微博签到数据的成渝城市群空间结构及其城际人口流动研究[J]. 地球信息科学学报, 2019, 21(1):68−76. doi: 10.12082/dqxxkx.2019.180235.

    Pan B L, Wang J H, Ge Y, et al. Spatial structure and population flow analysis in Chengdu-Chongqing urban agglomeration based on Weibo Check-in Big Data[J]. Journal of Geo-Information Science, 2019, 21(1): 68−76. doi: 10.12082/dqxxkx.2019.180235.
    [11]
    中华人民共和国国家发展和改革委员会. 成渝城市群发展规划[EB/OL]. (2016−04−27)[2020−01−02]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201605/t20160504_963034.html.

    National Development and Reform Commission. Chengdu-Chongqing urban agglomeration development plan[EB/OL]. (2016−04−27)[2020−01−02]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201605/t20160504_963034.html.
    [12]
    谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报, 2008, 23(5):911−919. doi: 10.3321/j.issn:1000-3037.2008.05.019.

    Xie G D, Zhen L, Lu C X, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008, 23(5): 911−919. doi: 10.3321/j.issn:1000-3037.2008.05.019.
    [13]
    Zhong Y, Lin A W, He L J, et al. Spatiotemporal dynamics and driving forces of urban land-use expansion: a case study of the Yangtze River economic belt, China[J/OL]. Remote Sensing, 2020, 12(2): 287 [2020−03−06]. http://dx.doi.org/10.3390/rs12020287.
    [14]
    Huang X, Huang X J, Liu M M, et al. Spatial-temporal dynamics and driving forces of land development intensity in the western China from 2000 to 2015[J]. Chinese Geographical Science, 2020, 30(1): 16−29. doi: 10.1007/s11769-020-1095-2.
    [15]
    杜茂华, 杨刚. 基于锡尔系数和基尼系数法的重庆城乡发展差异分析[J]. 经济地理, 2010, 30(5):773−777.

    Du M H, Yang G. The analysis of differences in Chongqing urban and rural development based on Theil and Gini coefficient[J]. Economic Geography, 2010, 30(5): 773−777.
    [16]
    许旭, 金凤君, 刘鹤. 成渝经济区县域经济实力的时空差异分析[J]. 经济地理, 2010, 30(3):388−392.

    Xu X, Jin F J, Liu H. Analysis of regional economy in time-space disparities in Chengdu-Chongqing economic zone[J]. Economic Geography, 2010, 30(3): 388−392.
    [17]
    李方正. 基于多源数据分析的北京市中心城绿色空间格局演变和优化研究[D]. 北京: 北京林业大学, 2018.

    Li F Z. Evolution and optimization of green space pattern in central Beijing based on multi-source data[D]. Beijing: Beijing Forestry University, 2018.
    [18]
    邓煌炜, 廖振良. 生态系统服务驱动因素及供需研究进展[J]. 环境科技, 2020, 33(1):74−78.

    Deng H W, Liao Z L. Review of drivers, supply and demand of ecosystem services[J]. Environmental Science and Technology, 2020, 33(1): 74−78.
    [19]
    Liu C L, Wang T, Guo Q B. Factors aggregating ability and the regional differences among China’s urban agglomerations[J/OL]. Sustainability, 2018, 10(11): 4179 [2020−01−05]. http://dx.doi.org/10.3390/su10114179.
    [20]
    Chen J H, Wang D C, Li G D, et al. Spatial and temporal heterogeneity analysis of water conservation in Beijing-Tianjin-Hebei urban agglomeration based on the geodetector and spatial elastic coefficient trajectory models[J/OL]. GeoHealth, 2020, 4(8): e2020GH000248 [2020−03−01]. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GH000248.
    [21]
    Dai X, Wang L C, Huang C B, et al. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China[J/OL]. Ecological Indicators, 2020, 115: 106394 [2020−01−16]. https://www.sciencedirect.com/science/article/abs/pii/S1470160X20303319.
    [22]
    Gao J, Wang L C. Embedding spatiotemporal changes in carbon storage into urban agglomeration ecosystem management : a case study of the Yangtze River Delta, China[J/OL]. Journal of Cleaner Production, 2019, 237: 117764 [2020−02−18]. https://www.sciencedirect.com/science/article/abs/pii/S0959652619326241.
    [23]
    Luo Q L, Zhou J F, Li Z G, et al. Spatial differences of ecosystem services and their driving factors: a comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt[J/OL]. Science of the Total Environment, 2020, 725: 138452 [2020−02−06]. https://www.sciencedirect.com/science/article/abs/pii/S0048969720319653.
    [24]
    Sun W, Li D H, Wang X R, et al. Exploring the scale effects, trade-offs and driving forces of the mismatch of ecosystem services[J]. Ecological Indicators, 2019, 103: 617−629. doi: 10.1016/j.ecolind.2019.04.062.
    [25]
    Lyu R F, Clarke K C, Zhang J M, et al. Spatial correlations among ecosystem services and their socio-ecological driving factors: a case study in the city belt along the Yellow River in Ningxia, China[J]. Applied Geography, 2019, 108: 64−73. doi: 10.1016/j.apgeog.2019.05.003.
    [26]
    黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3):966−975. doi: 10.3321/j.issn:1000-0933.2008.03.008.

    Huang C D, Zhang J, Yang W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City[J]. Acta Ecologica Sinica, 2008, 28(3): 966−975. doi: 10.3321/j.issn:1000-0933.2008.03.008.
    [27]
    祁生林, 张洪江, 何凡, 等. 重庆四面山植被类型对坡面产流的影响[J]. 中国水土保持科学, 2006, 4(4):33−38. doi: 10.3969/j.issn.1672-3007.2006.04.006.

    Qi S L, Zhang H J, He F, et al. Effect of the vegetation types on runoff generation on slope land in Simian Mountain of Chongqing[J]. Science of Soil and Water Conservation, 2006, 4(4): 33−38. doi: 10.3969/j.issn.1672-3007.2006.04.006.
    [28]
    林孝松. 滑坡与降雨研究[J]. 地质灾害与环境保护, 2001, 12(3):1−7. doi: 10.3969/j.issn.1006-4362.2001.03.001.

    Lin X S. The study of landslide related to rainfall[J]. Journal of Geological Hazards and Environment Preservation, 2001, 12(3): 1−7. doi: 10.3969/j.issn.1006-4362.2001.03.001.
    [29]
    陈俊华, 黎燕琼, 郑绍伟, 等. 成渝地区城市森林树种选择研究[J]. 甘肃农业大学学报, 2008, 53(1):130−136. doi: 10.3969/j.issn.1003-4315.2008.01.027.

    Chen J H, Li Y Q, Zheng S W, et al. Tree species selection on urban forest in Chengdu-Chongqing region[J]. Journal of Gansu Agricultural University, 2008, 53(1): 130−136. doi: 10.3969/j.issn.1003-4315.2008.01.027.
    [30]
    方一平. 成渝产业带产业结构的相似性及其结构转换力分析[J]. 长江流域资源与环境, 2000, 9(1):22−27.

    Fang Y P. On industrial structure similarity and the ability of structural adjustment in Chengdu and Chongqing regions[J]. Resources and Environment in the Yangtze Basin, 2000, 9(1): 22−27.
    [31]
    黄炳康, 李忆春, 吴敏. 成渝产业带主要城市空间关系研究[J]. 地理科学, 2000, 20(5):411−415. doi: 10.3969/j.issn.1000-0690.2000.05.004.

    Huang B K, Li Y C, Wu M. The research of main cities space relations of Cheng-Yu industry belt[J]. Scientia Geographica Sinica, 2000, 20(5): 411−415. doi: 10.3969/j.issn.1000-0690.2000.05.004.
    [32]
    于涛方. 中国城市人口流动增长的空间类型及影响因素[J]. 中国人口科学, 2012(4):47−58.

    Yu T F. Spatial-temporal features and influential factors of the China urban floating population growth[J]. Chinese Journal of Population Science, 2012(4): 47−58.
    [33]
    刘望保, 石恩名. 基于ICT的中国城市间人口日常流动空间格局:以百度迁徙为例[J]. 地理学报, 2016, 71(10):1667−1679. doi: 10.11821/dlxb201610001.

    Liu W B, Shi E M. Spatial pattern of population daily flow among cities based on ICT: a case study of “Baidu Migration”[J]. Acta Geographica Sinica, 2016, 71(10): 1667−1679. doi: 10.11821/dlxb201610001.
    [34]
    冯伟林, 李树茁, 李聪. 生态系统服务与人类福祉:文献综述与分析框架[J]. 资源科学, 2013, 35(7):1482−1489.

    Feng W L, Li S Z, Li C. Overview and frame work for ecosystem services and human well-being[J]. Resources Science, 2013, 35(7): 1482−1489.
  • Cited by

    Periodical cited type(8)

    1. 兰宇铭. 基于CiteSpace的国内红松研究趋势与热点分析. 辽宁林业科技. 2022(01): 33-39 .
    2. 都津铭,张萍,高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性. 现代食品科技. 2021(10): 87-95 .
    3. 李晓娇,李悦,董锦,张化艳,宋志姣. 云南松针精油的提取及抗氧化活性研究. 中国食品添加剂. 2020(07): 27-35 .
    4. 龚婷,张敏,王海珠,宗学凤,廖林正. 大叶茜草精油挥发性物质抑菌及抗氧化活性研究. 西南师范大学学报(自然科学版). 2019(06): 54-59 .
    5. 岳鑫,包怡红. 基于荧光及紫外光谱法对红松种鳞多酚与乳清蛋白相互作用的研究. 现代食品科技. 2019(07): 114-120 .
    6. 郭奇泳,张艳,石茂军,张琪瑶,吴聪,赵玉红. 烘焙对红松种籽衣活性成分含量及抗氧化活性的影响. 现代食品科技. 2018(12): 159-166+158 .
    7. 樊梓鸾,张艳东,张华,王振宇,包怡红. 红松松针精油抗氧化和抑菌活性研究. 北京林业大学学报. 2017(08): 98-103 . 本站查看
    8. 樊梓鸾,陈凯莉,高芯,包怡红. 五种松针多酚的提取优化及抗氧化活性研究. 现代食品科技. 2017(08): 211-220 .

    Other cited types(3)

Catalog

    Article views (1862) PDF downloads (107) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return